Spaces:
Sleeping
Sleeping
Update pages/2_🏋️♀️_Model_training.py
Browse files- pages/2_🏋️♀️_Model_training.py +50 -50
pages/2_🏋️♀️_Model_training.py
CHANGED
@@ -1,51 +1,51 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
from persist import persist, load_widget_state
|
4 |
-
import numpy as np
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
global variable_output
|
7 |
-
|
8 |
-
def main():
|
9 |
-
|
10 |
-
cs_body()
|
11 |
-
|
12 |
-
def convert_csv():
|
13 |
-
d = {'col1': [], 'col2': []}
|
14 |
-
df = pd.DataFrame(data=d, columns=['Age', 'Sex'])
|
15 |
-
return df.to_csv().encode("utf-8")
|
16 |
-
|
17 |
-
def cs_body():
|
18 |
-
|
19 |
-
st.header('Training Data and Methodology')
|
20 |
-
st.write("Provide an overview of the Training Data and Training Procedure for this model")
|
21 |
-
st.markdown('##### Training dataset')
|
22 |
-
left, right = st.columns(2)
|
23 |
-
left.number_input("Training set size",value=100)
|
24 |
-
right.number_input("Validation set size",value=20)
|
25 |
-
st.text("Demographical and clinical characteristics")
|
26 |
-
left, right = st.columns(2
|
27 |
-
left.download_button("Download Template", data=convert_csv(), file_name='file.csv')
|
28 |
-
demo = right.file_uploader("Load template",type=['csv'])
|
29 |
-
if demo is not None:
|
30 |
-
left, right = st.columns(2
|
31 |
-
|
32 |
-
fig, ax = plt.subplots()
|
33 |
-
ax.set_title("Age distribution")
|
34 |
-
ax.hist(np.random.normal(size=500))
|
35 |
-
left.pyplot(fig)
|
36 |
-
|
37 |
-
fig, ax = plt.subplots()
|
38 |
-
ax.pie([45,55],labels=["Men","Women"])
|
39 |
-
right.pyplot(fig)
|
40 |
-
st.text_input("Source",placeholder="Brats challenge/ Clinic ...")
|
41 |
-
st.text("Acquisition date")
|
42 |
-
left, right = st.columns(2)
|
43 |
-
left.date_input("From")
|
44 |
-
right.date_input("To")
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
if __name__ == '__main__':
|
50 |
-
load_widget_state()
|
51 |
main()
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from persist import persist, load_widget_state
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
global variable_output
|
7 |
+
|
8 |
+
def main():
|
9 |
+
|
10 |
+
cs_body()
|
11 |
+
|
12 |
+
def convert_csv():
|
13 |
+
d = {'col1': [], 'col2': []}
|
14 |
+
df = pd.DataFrame(data=d, columns=['Age', 'Sex'])
|
15 |
+
return df.to_csv().encode("utf-8")
|
16 |
+
|
17 |
+
def cs_body():
|
18 |
+
|
19 |
+
st.header('Training Data and Methodology')
|
20 |
+
st.write("Provide an overview of the Training Data and Training Procedure for this model")
|
21 |
+
st.markdown('##### Training dataset')
|
22 |
+
left, right = st.columns(2)
|
23 |
+
left.number_input("Training set size",value=100)
|
24 |
+
right.number_input("Validation set size",value=20)
|
25 |
+
st.text("Demographical and clinical characteristics")
|
26 |
+
left, right = st.columns(2)#, vertical_alignment ="center")
|
27 |
+
left.download_button("Download Template", data=convert_csv(), file_name='file.csv')
|
28 |
+
demo = right.file_uploader("Load template",type=['csv'])
|
29 |
+
if demo is not None:
|
30 |
+
left, right = st.columns(2)#, vertical_alignment ="center")
|
31 |
+
|
32 |
+
fig, ax = plt.subplots()
|
33 |
+
ax.set_title("Age distribution")
|
34 |
+
ax.hist(np.random.normal(size=500))
|
35 |
+
left.pyplot(fig)
|
36 |
+
|
37 |
+
fig, ax = plt.subplots()
|
38 |
+
ax.pie([45,55],labels=["Men","Women"])
|
39 |
+
right.pyplot(fig)
|
40 |
+
st.text_input("Source",placeholder="Brats challenge/ Clinic ...")
|
41 |
+
st.text("Acquisition date")
|
42 |
+
left, right = st.columns(2)
|
43 |
+
left.date_input("From")
|
44 |
+
right.date_input("To")
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == '__main__':
|
50 |
+
load_widget_state()
|
51 |
main()
|