Margerie commited on
Commit
2361e22
·
verified ·
1 Parent(s): 63daee2

Update pages/2_🏋️‍♀️_Model_training.py

Browse files
pages/2_🏋️‍♀️_Model_training.py CHANGED
@@ -1,51 +1,51 @@
1
- import streamlit as st
2
- import pandas as pd
3
- from persist import persist, load_widget_state
4
- import numpy as np
5
- import matplotlib.pyplot as plt
6
- global variable_output
7
-
8
- def main():
9
-
10
- cs_body()
11
-
12
- def convert_csv():
13
- d = {'col1': [], 'col2': []}
14
- df = pd.DataFrame(data=d, columns=['Age', 'Sex'])
15
- return df.to_csv().encode("utf-8")
16
-
17
- def cs_body():
18
-
19
- st.header('Training Data and Methodology')
20
- st.write("Provide an overview of the Training Data and Training Procedure for this model")
21
- st.markdown('##### Training dataset')
22
- left, right = st.columns(2)
23
- left.number_input("Training set size",value=100)
24
- right.number_input("Validation set size",value=20)
25
- st.text("Demographical and clinical characteristics")
26
- left, right = st.columns(2, vertical_alignment ="center")
27
- left.download_button("Download Template", data=convert_csv(), file_name='file.csv')
28
- demo = right.file_uploader("Load template",type=['csv'])
29
- if demo is not None:
30
- left, right = st.columns(2, vertical_alignment ="center")
31
-
32
- fig, ax = plt.subplots()
33
- ax.set_title("Age distribution")
34
- ax.hist(np.random.normal(size=500))
35
- left.pyplot(fig)
36
-
37
- fig, ax = plt.subplots()
38
- ax.pie([45,55],labels=["Men","Women"])
39
- right.pyplot(fig)
40
- st.text_input("Source",placeholder="Brats challenge/ Clinic ...")
41
- st.text("Acquisition date")
42
- left, right = st.columns(2)
43
- left.date_input("From")
44
- right.date_input("To")
45
-
46
-
47
-
48
-
49
- if __name__ == '__main__':
50
- load_widget_state()
51
  main()
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from persist import persist, load_widget_state
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+ global variable_output
7
+
8
+ def main():
9
+
10
+ cs_body()
11
+
12
+ def convert_csv():
13
+ d = {'col1': [], 'col2': []}
14
+ df = pd.DataFrame(data=d, columns=['Age', 'Sex'])
15
+ return df.to_csv().encode("utf-8")
16
+
17
+ def cs_body():
18
+
19
+ st.header('Training Data and Methodology')
20
+ st.write("Provide an overview of the Training Data and Training Procedure for this model")
21
+ st.markdown('##### Training dataset')
22
+ left, right = st.columns(2)
23
+ left.number_input("Training set size",value=100)
24
+ right.number_input("Validation set size",value=20)
25
+ st.text("Demographical and clinical characteristics")
26
+ left, right = st.columns(2)#, vertical_alignment ="center")
27
+ left.download_button("Download Template", data=convert_csv(), file_name='file.csv')
28
+ demo = right.file_uploader("Load template",type=['csv'])
29
+ if demo is not None:
30
+ left, right = st.columns(2)#, vertical_alignment ="center")
31
+
32
+ fig, ax = plt.subplots()
33
+ ax.set_title("Age distribution")
34
+ ax.hist(np.random.normal(size=500))
35
+ left.pyplot(fig)
36
+
37
+ fig, ax = plt.subplots()
38
+ ax.pie([45,55],labels=["Men","Women"])
39
+ right.pyplot(fig)
40
+ st.text_input("Source",placeholder="Brats challenge/ Clinic ...")
41
+ st.text("Acquisition date")
42
+ left, right = st.columns(2)
43
+ left.date_input("From")
44
+ right.date_input("To")
45
+
46
+
47
+
48
+
49
+ if __name__ == '__main__':
50
+ load_widget_state()
51
  main()