|
|
|
from persist import persist, load_widget_state
|
|
import streamlit as st
|
|
from io import StringIO
|
|
import tempfile
|
|
from pathlib import Path
|
|
import requests
|
|
from huggingface_hub import hf_hub_download, upload_file
|
|
import pandas as pd
|
|
from huggingface_hub import create_repo
|
|
import os
|
|
from datetime import date
|
|
from middleMan import parse_into_jinja_markdown as pj
|
|
|
|
import requests
|
|
|
|
@st.cache
|
|
def get_icd():
|
|
|
|
token_endpoint = 'https://icdaccessmanagement.who.int/connect/token'
|
|
client_id = '3bc9c811-7f2e-4dab-a2dc-940e47a38fef_a6108252-4503-4ff7-90ab-300fd27392aa'
|
|
client_secret = 'xPj7mleWf1Bilu9f7P10UQmBPvL5F6Wgd8/rJhO1T04='
|
|
scope = 'icdapi_access'
|
|
grant_type = 'client_credentials'
|
|
|
|
payload = {'client_id': client_id,
|
|
'client_secret': client_secret,
|
|
'scope': scope,
|
|
'grant_type': grant_type}
|
|
|
|
r = requests.post(token_endpoint, data=payload, verify=False).json()
|
|
token = r['access_token']
|
|
|
|
uri = 'https://id.who.int/icd/release/10/2019/C00-C75'
|
|
|
|
headers = {'Authorization': 'Bearer '+token,
|
|
'Accept': 'application/json',
|
|
'Accept-Language': 'en',
|
|
'API-Version': 'v2'}
|
|
|
|
r = requests.get(uri, headers=headers, verify=False)
|
|
print("icd",r.json())
|
|
icd_map =[]
|
|
for child in r.json()['child']:
|
|
r_child = requests.get(child, headers=headers,verify=False).json()
|
|
icd_map.append(r_child["code"]+" "+r_child["title"]["@value"])
|
|
return icd_map
|
|
|
|
@st.cache
|
|
def get_treatment_mod():
|
|
url = "https://clinicaltables.nlm.nih.gov/loinc_answers?loinc_num=21964-2"
|
|
r = requests.get(url).json()
|
|
treatment_mod = [treatment['DisplayText'] for treatment in r]
|
|
return treatment_mod
|
|
|
|
|
|
@st.cache
|
|
def get_cached_data():
|
|
languages_df = pd.read_html("https://hf.co/languages")[0]
|
|
languages_map = pd.Series(languages_df["Language"].values, index=languages_df["ISO code"]).to_dict()
|
|
|
|
license_df = pd.read_html("https://huggingface.co/docs/hub/repositories-licenses")[0]
|
|
license_map = pd.Series(
|
|
license_df["License identifier (to use in repo card)"].values, index=license_df.Fullname
|
|
).to_dict()
|
|
|
|
available_metrics = [x['id'] for x in requests.get('https://huggingface.co/api/metrics').json()]
|
|
|
|
r = requests.get('https://huggingface.co/api/models-tags-by-type')
|
|
tags_data = r.json()
|
|
libraries = [x['id'] for x in tags_data['library']]
|
|
tasks = [x['id'] for x in tags_data['pipeline_tag']]
|
|
|
|
icd_map = get_icd()
|
|
treatment_mod = get_treatment_mod()
|
|
return languages_map, license_map, available_metrics, libraries, tasks, icd_map, treatment_mod
|
|
|
|
|
|
def card_upload(card_info,repo_id,token):
|
|
|
|
repo_type = "model"
|
|
commit_description=None,
|
|
revision=None
|
|
create_pr=None
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
tmp_path = Path(tmpdir) / "README.md"
|
|
tmp_path.write_text(str(card_info))
|
|
url = upload_file(
|
|
path_or_fileobj=str(tmp_path),
|
|
path_in_repo="README.md",
|
|
repo_id=repo_id,
|
|
token=token,
|
|
repo_type=repo_type,
|
|
|
|
revision=revision
|
|
)
|
|
return url
|
|
|
|
def images_upload(images_list,repo_id,token):
|
|
repo_type = "model"
|
|
commit_description=None,
|
|
revision=None
|
|
create_pr=None
|
|
for img in images_list:
|
|
if img is not None:
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
tmp_path = Path(tmpdir) / "README.md"
|
|
tmp_path.write_text(str(img))
|
|
url = upload_file(
|
|
path_or_fileobj=str(tmp_path),
|
|
path_in_repo="README.md",
|
|
repo_id=repo_id,
|
|
token=token,
|
|
repo_type=repo_type,
|
|
|
|
revision=revision
|
|
)
|
|
return url
|
|
|
|
def validate(self, repo_type="model"):
|
|
"""Validates card against Hugging Face Hub's model card validation logic.
|
|
Using this function requires access to the internet, so it is only called
|
|
internally by `modelcards.ModelCard.push_to_hub`.
|
|
Args:
|
|
repo_type (`str`, *optional*):
|
|
The type of Hugging Face repo to push to. Defaults to None, which will use
|
|
use "model". Other options are "dataset" and "space".
|
|
"""
|
|
if repo_type is None:
|
|
repo_type = "model"
|
|
|
|
|
|
if repo_type not in ["model", "space", "dataset"]:
|
|
raise RuntimeError(
|
|
"Provided repo_type '{repo_type}' should be one of ['model', 'space',"
|
|
" 'dataset']."
|
|
)
|
|
|
|
body = {
|
|
"repoType": repo_type,
|
|
"content": str(self),
|
|
}
|
|
headers = {"Accept": "text/plain"}
|
|
|
|
try:
|
|
r = requests.post(
|
|
"https://huggingface.co/api/validate-yaml", body, headers=headers
|
|
)
|
|
r.raise_for_status()
|
|
except requests.exceptions.HTTPError as exc:
|
|
if r.status_code == 400:
|
|
raise RuntimeError(r.text)
|
|
else:
|
|
raise exc
|
|
|
|
|
|
|
|
def save_uploadedfile(uploadedfile):
|
|
with open(uploadedfile.name,"wb") as f:
|
|
f.write(uploadedfile.getbuffer())
|
|
st.success("Saved File:{} to temp_uploaded_filed_Dir".format(uploadedfile.name))
|
|
return uploadedfile.name
|
|
|
|
|
|
def main_page():
|
|
today=date.today()
|
|
|
|
if "model_name" not in st.session_state:
|
|
|
|
st.session_state.update({
|
|
|
|
"model_version": 0,
|
|
"icd10": [],
|
|
"treatment_modality": [],
|
|
"prescription_levels": [],
|
|
"additional_information": "",
|
|
"motivation": "",
|
|
"model_class":"",
|
|
"creation_date": today,
|
|
"architecture": "",
|
|
"model_developers": "",
|
|
"funded_by":"",
|
|
"shared_by":"",
|
|
"license": "",
|
|
"finetuned_from": "",
|
|
"research_paper": "",
|
|
"git_repo": "",
|
|
|
|
"nb_parameters": 5,
|
|
"input_channels": [],
|
|
"loss_function": "",
|
|
"batch_size": 1,
|
|
"patch_dimension": [],
|
|
"architecture_filename":None,
|
|
"libraries":[],
|
|
"hardware": "",
|
|
"inference_time": 10,
|
|
"get_started_code": "",
|
|
|
|
"training_set_size":10,
|
|
"validation_set_size":10,
|
|
"age_fig_filename":"",
|
|
"sex_fig_filename":"",
|
|
"dataset_source": "",
|
|
"acquisition_from": today,
|
|
"acquisition_to": today,
|
|
"markdown_upload": ""
|
|
})
|
|
|
|
languages_map, license_map, available_metrics, libraries, tasks, icd_map, treatment_mod = get_cached_data()
|
|
|
|
|
|
st.header("Model basic information (Dose prediction)")
|
|
|
|
warning_placeholder = st.empty()
|
|
|
|
st.text_input("Model Name", key=persist("model_name"))
|
|
st.number_input("Version",key=persist("model_version"),step=0.1)
|
|
st.text("Intended use:")
|
|
left, right = st.columns([4,2])
|
|
left.multiselect("Treatment site ICD10",list(icd_map), help="Reference ICD10 WHO: https://icd.who.int/icdapi",key=persist("icd10"))
|
|
right.multiselect("Treatment modality", list(treatment_mod), help="Reference LOINC Modality Radiation treatment: https://loinc.org/21964-2", key=persist("treatment_modality"))
|
|
left, right = st.columns(2)
|
|
nlines = int(left.number_input("Number of prescription levels", 0, 20, 1))
|
|
|
|
for i in range(nlines):
|
|
right.number_input(f"Prescription [Gy] # {i}", key=i)
|
|
st.text_area("Additional information", placeholder = "Bilateral cases only", help="E.g. Bilateral cases only", key=persist('additional_information'))
|
|
st.text_area("Motivation for development", key=persist('motivation'))
|
|
st.text_area("Class", placeholder="RULE 11, FROM MDCG 2021-24", key=persist('model_class'))
|
|
st.date_input("Creation date", key=persist('creation_date'))
|
|
st.text_area("Type of architecture",value="UNet", key=persist('architecture'))
|
|
|
|
st.text("Developed by:")
|
|
left, middle, right = st.columns(3)
|
|
left.text_input("Name", key=persist('dev_name'))
|
|
middle.text_input("Institution", placeholder = "University/clinic/company", key=persist('dev_institution'))
|
|
right.text_input("Email", key=persist('dev_email'))
|
|
|
|
st.text_area("Funded by", key=persist('funded_by'))
|
|
st.text_area("Shared by", key=persist('shared_by'))
|
|
st.selectbox("License", [""] + list(license_map.values()), help="The license associated with this model.", key=persist("license"))
|
|
st.text_area("Fine tuned from model", key=persist('finetuned_from'))
|
|
st.text_area("Related Research Paper", help="Research paper related to this model.", key=persist("research_paper"))
|
|
st.text_input("Related GitHub Repository", help="Link to a GitHub repository used in the development of this model", key=persist("git_repo"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
license=st.session_state.license or None
|
|
task = None
|
|
markdown_upload = st.session_state.markdown_upload
|
|
|
|
|
|
do_warn = False
|
|
warning_msg = "Warning: The following fields are required but have not been filled in: "
|
|
if not license:
|
|
warning_msg += "\n- License"
|
|
do_warn = True
|
|
if do_warn:
|
|
warning_placeholder.error(warning_msg)
|
|
|
|
with st.sidebar:
|
|
|
|
|
|
|
|
|
|
st.markdown("## Upload Model Card")
|
|
|
|
st.markdown("#### Model Card must be in markdown (.md) format.")
|
|
|
|
|
|
uploaded_file = st.file_uploader("Choose a file", type = ['md'], help = 'Please choose a markdown (.md) file type to upload')
|
|
if uploaded_file is not None:
|
|
name_of_uploaded_file = save_uploadedfile(uploaded_file)
|
|
|
|
st.session_state.markdown_upload = name_of_uploaded_file
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
st.session_state.markdown_upload = "current_card.md"
|
|
print("st.session_state.markdown_upload",st.session_state.markdown_upload)
|
|
|
|
|
|
|
|
out_markdown =open( st.session_state.markdown_upload, "r+"
|
|
).read()
|
|
print_out_final = f"{out_markdown}"
|
|
st.markdown("## Export Loaded Model Card to Hub")
|
|
with st.form("Upload to π€ Hub"):
|
|
st.markdown("Use a token with write access from [here](https://hf.co/settings/tokens)")
|
|
token = st.text_input("Token", type='password')
|
|
repo_id = st.text_input("Repo ID")
|
|
submit = st.form_submit_button('Upload to π€ Hub', help='The current model card will be uploaded to a branch in the supplied repo ')
|
|
|
|
if submit:
|
|
if len(repo_id.split('/')) == 2:
|
|
repo_url = create_repo(repo_id, exist_ok=True, token=token)
|
|
new_url = card_upload(pj(),repo_id, token=token)
|
|
|
|
st.success(f"Pushed the card to the repo [here]({new_url})!")
|
|
else:
|
|
st.error("Repo ID invalid. It should be username/repo-name. For example: nateraw/food")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.markdown("## Download current Model Card")
|
|
|
|
if st.session_state.model_name is None or st.session_state.model_name== ' ':
|
|
downloaded_file_name = 'current_model_card.md'
|
|
else:
|
|
downloaded_file_name = st.session_state.model_name+'_'+'model_card.md'
|
|
download_status = st.download_button(label = 'Download Model Card', data = pj(), file_name = downloaded_file_name, help = "The current model card will be downloaded as a markdown (.md) file")
|
|
if download_status == True:
|
|
st.success("Your current model card, successfully downloaded π€")
|
|
|
|
|
|
def page_switcher(page):
|
|
st.session_state.runpage = page
|
|
|
|
def main():
|
|
|
|
st.header("About Model Cards")
|
|
st.markdown(Path('about.md').read_text(), unsafe_allow_html=True)
|
|
btn = st.button('Create a Model Card π',on_click=page_switcher,args=(main_page,))
|
|
if btn:
|
|
st.experimental_rerun()
|
|
|
|
if __name__ == '__main__':
|
|
load_widget_state()
|
|
if 'runpage' not in st.session_state :
|
|
st.session_state.runpage = main
|
|
st.session_state.runpage()
|
|
|