Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from huggingface_hub import snapshot_download
|
| 6 |
+
from pyramid_dit import PyramidDiTForVideoGeneration
|
| 7 |
+
from diffusers.utils import export_to_video
|
| 8 |
+
|
| 9 |
+
# Constants
|
| 10 |
+
MODEL_PATH = "pyramid-flow-model"
|
| 11 |
+
MODEL_REPO = "rain1011/pyramid-flow-sd3"
|
| 12 |
+
MODEL_VARIANT = "diffusion_transformer_768p"
|
| 13 |
+
MODEL_DTYPE = "bf16"
|
| 14 |
+
|
| 15 |
+
# Download and load the model
|
| 16 |
+
def load_model():
|
| 17 |
+
if not os.path.exists(MODEL_PATH):
|
| 18 |
+
snapshot_download(MODEL_REPO, local_dir=MODEL_PATH, local_dir_use_symlinks=False, repo_type='model')
|
| 19 |
+
|
| 20 |
+
model = PyramidDiTForVideoGeneration(
|
| 21 |
+
MODEL_PATH,
|
| 22 |
+
MODEL_DTYPE,
|
| 23 |
+
model_variant=MODEL_VARIANT,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
model.vae.to("cuda")
|
| 27 |
+
model.dit.to("cuda")
|
| 28 |
+
model.text_encoder.to("cuda")
|
| 29 |
+
model.vae.enable_tiling()
|
| 30 |
+
|
| 31 |
+
return model
|
| 32 |
+
|
| 33 |
+
# Global model variable
|
| 34 |
+
model = load_model()
|
| 35 |
+
|
| 36 |
+
# Text-to-video generation function
|
| 37 |
+
def generate_video(prompt, duration, guidance_scale, video_guidance_scale):
|
| 38 |
+
temp = int(duration * 2.4) # Convert seconds to temp value (assuming 24 FPS)
|
| 39 |
+
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32
|
| 40 |
+
|
| 41 |
+
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
|
| 42 |
+
frames = model.generate(
|
| 43 |
+
prompt=prompt,
|
| 44 |
+
num_inference_steps=[20, 20, 20],
|
| 45 |
+
video_num_inference_steps=[10, 10, 10],
|
| 46 |
+
height=768,
|
| 47 |
+
width=1280,
|
| 48 |
+
temp=temp,
|
| 49 |
+
guidance_scale=guidance_scale,
|
| 50 |
+
video_guidance_scale=video_guidance_scale,
|
| 51 |
+
output_type="pil",
|
| 52 |
+
save_memory=True,
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
output_path = "output_video.mp4"
|
| 56 |
+
export_to_video(frames, output_path, fps=24)
|
| 57 |
+
return output_path
|
| 58 |
+
|
| 59 |
+
# Image-to-video generation function
|
| 60 |
+
def generate_video_from_image(image, prompt, duration, video_guidance_scale):
|
| 61 |
+
temp = int(duration * 2.4) # Convert seconds to temp value (assuming 24 FPS)
|
| 62 |
+
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32
|
| 63 |
+
|
| 64 |
+
image = image.resize((1280, 768))
|
| 65 |
+
|
| 66 |
+
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
|
| 67 |
+
frames = model.generate_i2v(
|
| 68 |
+
prompt=prompt,
|
| 69 |
+
input_image=image,
|
| 70 |
+
num_inference_steps=[10, 10, 10],
|
| 71 |
+
temp=temp,
|
| 72 |
+
guidance_scale=7.0,
|
| 73 |
+
video_guidance_scale=video_guidance_scale,
|
| 74 |
+
output_type="pil",
|
| 75 |
+
save_memory=True,
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
output_path = "output_video_i2v.mp4"
|
| 79 |
+
export_to_video(frames, output_path, fps=24)
|
| 80 |
+
return output_path
|
| 81 |
+
|
| 82 |
+
# Gradio interface
|
| 83 |
+
with gr.Blocks() as demo:
|
| 84 |
+
gr.Markdown("# Pyramid Flow Video Generation Demo")
|
| 85 |
+
|
| 86 |
+
with gr.Tab("Text-to-Video"):
|
| 87 |
+
with gr.Row():
|
| 88 |
+
with gr.Column():
|
| 89 |
+
t2v_prompt = gr.Textbox(label="Prompt")
|
| 90 |
+
t2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)")
|
| 91 |
+
t2v_guidance_scale = gr.Slider(minimum=1, maximum=15, value=9, step=0.1, label="Guidance Scale")
|
| 92 |
+
t2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=5, step=0.1, label="Video Guidance Scale")
|
| 93 |
+
t2v_generate_btn = gr.Button("Generate Video")
|
| 94 |
+
with gr.Column():
|
| 95 |
+
t2v_output = gr.Video(label="Generated Video")
|
| 96 |
+
|
| 97 |
+
t2v_generate_btn.click(
|
| 98 |
+
generate_video,
|
| 99 |
+
inputs=[t2v_prompt, t2v_duration, t2v_guidance_scale, t2v_video_guidance_scale],
|
| 100 |
+
outputs=t2v_output
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
with gr.Tab("Image-to-Video"):
|
| 104 |
+
with gr.Row():
|
| 105 |
+
with gr.Column():
|
| 106 |
+
i2v_image = gr.Image(type="pil", label="Input Image")
|
| 107 |
+
i2v_prompt = gr.Textbox(label="Prompt")
|
| 108 |
+
i2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)")
|
| 109 |
+
i2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=4, step=0.1, label="Video Guidance Scale")
|
| 110 |
+
i2v_generate_btn = gr.Button("Generate Video")
|
| 111 |
+
with gr.Column():
|
| 112 |
+
i2v_output = gr.Video(label="Generated Video")
|
| 113 |
+
|
| 114 |
+
i2v_generate_btn.click(
|
| 115 |
+
generate_video_from_image,
|
| 116 |
+
inputs=[i2v_image, i2v_prompt, i2v_duration, i2v_video_guidance_scale],
|
| 117 |
+
outputs=i2v_output
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
demo.launch()
|