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Abstract

The recently introduced continuous Skip-gram model is dicieft method for
learning high-quality distributed vector representaditimt capture a large num-
ber of precise syntactic and semantic word relationshipthis paper we present
several extensions that improve both the quality of theorscand the training
speed. By subsampling of the frequent words we obtain sigmifispeedup and
also learn more regular word representations. We also ibesarsimple alterna-
tive to the hierarchical softmax called negative sampling.

An inherent limitation of word representations is theiriffetence to word order
and their inability to represent idiomatic phrases. Fomeple, the meanings of
“Canada” and “Air” cannot be easily combined to obtain “Amatada”. Motivated
by this example, we present a simple method for finding plsrasiext, and show
that learning good vector representations for millionstufgses is possible.

1 Introduction

Distributed representations of words in a vector space kglping algorithms to achieve better
performance in natural language processing tasks by grgsnilar words. One of the earliest use
of word representations dates back to 1986 due to Rumehiain, and Williams[[1B]. This idea
has since been applied to statistical language modelingeaitsiderable success [1]. The follow
up work includes applications to automatic speech recmgn#nd machine translation [14, 7], and
a wide range of NLP tasksl[2, 20,]15/ 3] 18] [19, 9].

Recently, Mikolov et al.[[B] introduced the Skip-gram maqdai efficient method for learning high-
quality vector representations of words from large amoohtmstructured text data. Unlike most
of the previously used neural network architectures fomigg word vectors, training of the Skip-
gram model (see Figufé 1) does not involve dense matrix phigkitions. This makes the training
extremely efficient: an optimized single-machine impletagan can train on more than 100 billion
words in one day.

The word representations computed using neural netwoekgaay interesting because the learned
vectors explicitly encode many linguistic regularitieslgratterns. Somewhat surprisingly, many of
these patterns can be represented as linear translationex&mple, the result of a vector calcula-
tion vec(“Madrid”) - vec(“Spain”) + vec(“France”) is clos¢o vec(“Paris”) than to any other word
vector [9/8].
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Figure 1: The Skip-gram model architecture. The training objects/éoilearn word vector representations
that are good at predicting the nearby words.

In this paper we present several extensions of the origikigl-§am model. We show that sub-

sampling of frequent words during training results in a gigant speedup (around 2x - 10x), and
improves accuracy of the representations of less frequerdsy In addition, we present a simpli-

fied variant of Noise Contrastive Estimation (NCE) [4] faxitring the Skip-gram model that results
in faster training and better vector representations fequdent words, compared to more complex
hierarchical softmax that was used in the prior work [8].

Word representations are limited by their inability to megent idiomatic phrases that are not com-
positions of the individual words. For example, “Boston Kb is a newspaper, and so it is not a
natural combination of the meanings of “Boston” and “Glab&herefore, using vectors to repre-

sent the whole phrases makes the Skip-gram model consigenabe expressive. Other techniques
that aim to represent meaning of sentences by composingdle wectors, such as the recursive
autoencoders [15], would also benefit from using phraseoveatstead of the word vectors.

The extension from word based to phrase based models isedlaimple. First we identify a large
number of phrases using a data-driven approach, and thereatete phrases as individual tokens
during the training. To evaluate the quality of the phrasgmes, we developed a test set of analogi-
cal reasoning tasks that contains both words and phrasegidat analogy pair from our test set is
“Montreal”:*"Montreal Canadiens”::“Toronto”:“Toronto lelple Leafs”. It is considered to have been
answered correctly if the nearest representation to veofitkéal Canadiens”) - vec(“Montreal”) +
vec(“Toronto”) is vec(“Toronto Maple Leafs”).

Finally, we describe another interesting property of thgpSjram model. We found that simple
vector addition can often produce meaningful results. Kkample, vec(“Russia”) + vec(“river”) is
close to vec(“Volga River”), and vec(“Germany”) + vec(“¢td") is close to vec(“Berlin”). This
compositionality suggests that a non-obvious degree gfuage understanding can be obtained by
using basic mathematical operations on the word vectoesgmtations.

2 The Skip-gram M odel

The training objective of the Skip-gram model is to find woeghnesentations that are useful for
predicting the surrounding words in a sentence or a docunhmrte formally, given a sequence of
training wordsw , wa, ws, . . . , wr, the objective of the Skip-gram model is to maximize the ager
log probability
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wherec is the size of the training context (which can be a functiothef center wordu,). Larger
¢ results in more training examples and thus can lead to a higw®iracy, at the expense of the



training time. The basic Skip-gram formulation defipés, ., ;|w,) using the softmax function:
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wherev,, and v, are the “input” and “output” vector representationswaf and W is the num-
ber of words in the vocabulary. This formulation is impraatibecause the cost of computing
V log p(wo|wr) is proportional toW, which is often largel(0°-107 terms).
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2.1 Hierarchical Softmax

A computationally efficient approximation of the full soféaxis the hierarchical softmax. In the
context of neural network language models, it was first ohiieed by Morin and Bengio [12]. The
main advantage is that instead of evaluatifigoutput nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only ableg, (W) nodes.

The hierarchical softmax uses a binary tree representafitre output layer with thé& words as
its leaves and, for each node, explicitly represents ttaivel probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word can be reached by an appropriate path from the root of the lrete
n(w, j) be thej-th node on the path from the roottq and letL(w) be the length of this path, so
n(w, 1) = root andn(w, L(w)) = w. In addition, for any inner node, let ch(n) be an arbitrary
fixed child ofn and let[z] be 1 ifz is true and -1 otherwise. Then the hierarchical softmax dsfin
p(wo|wy) as follows:

L(w)—1
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whereo(z) = 1/(1 + exp(—z)). It can be verified thaEKzlp(wm]) = 1. This implies that the
cost of computindog p(we|wr) andV log p(wo |wy) is proportional tol (we ), which on average
is no greater thaiog W. Also, unlike the standard softmax formulation of the S@iam which
assigns two representations andv/, to each wordw, the hierarchical softmax formulation has
one representation,, for each wordw and one representatiarj, for every inner node: of the
binary tree.

The structure of the tree used by the hierarchical softmaxaheonsiderable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for coasihg the tree structure and the
effect on both the training time and the resulting model eacyi[10]. In our work we use a binary

Huffman tree, as it assigns short codes to the frequent wehiish results in fast training. It has

been observed before that grouping words together by tfegjuéncy works well as a very simple
speedup technique for the neural network based languagelsn&c8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise CortivasEstimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to languagdeling by Mnih and Tel [11].
NCE posits that a good model should be able to differentiata ftom noise by means of logistic
regression. This is similar to hinge loss used by Collobedt Weston[[2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log phility of the softmax, the Skip-
gram model is only concerned with learning high-qualityteecepresentations, so we are free to
simplify NCE as long as the vector representations retaim uality. We define Negative sampling
(NEG) by the objective
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Figure 2:Two-dimensional PCA projection of the 1000-dimensionaipSikram vectors of countries and their
capital cities. The figure illustrates ability of the modekutomatically organize concepts and learn implicitly
the relationships between them, as during the training wendt provide any supervised information about
what a capital city means.

which is used to replace evelyg P(wo|wr) term in the Skip-gram objective. Thus the task is to
distinguish the target wordo from draws from the noise distributiaf, (w) using logistic regres-
sion, where there arenegative samples for each data sample. Our experimentaiedhat values
of k in the range 5-20 are useful for small training datasetdevibr large datasets thecan be as
small as 2-5. The main difference between the Negative sagghd NCE is that NCE needs both
samples and the numerical probabilities of the noise digion, while Negative sampling uses only
samples. And while NCE approximately maximizes the log plolity of the softmax, this property
is not important for our application.

Both NCE and NEG have the noise distributiBn(w) as a free parameter. We investigated a number
of choices forP,,(w) and found that the unigram distributidi(w) raised to the3/4rd power (i.e.,
U(w)/*/Z) outperformed significantly the unigram and the uniforntritisitions, for both NCE
and NEG on every task we tried including language modeling f@ported here).

2.3 Subsampling of Frequent Words

In very large corpora, the most frequent words can easilyoleandreds of millions of times (e.g.,

“in”, “the”, and “a”). Such words usually provide less infoation value than the rare words. For
example, while the Skip-gram model benefits from observirgdo-occurrences of “France” and
“Paris”, it benefits much less from observing the frequerbcourrences of “France” and “the”, as
nearly every word co-occurs frequently within a sentendé fthe”. This idea can also be applied
in the opposite direction; the vector representations efdent words do not change significantly
after training on several million examples.

To counter the imbalance between the rare and frequent ywaedased a simple subsampling ap-
proach: each word; in the training set is discarded with probability computgdhee formula

®)



Method Time [min] | Syntactic [%] Semantic [%] Total accuracy [%]

NEG-5 38 63 54 59

NEG-15 97 63 58 61
HS-Huffman 41 53 40 47

NCE-5 38 60 45 53

The following results us@0 > subsampling

NEG-5 14 61 58 60

NEG-15 36 61 61 61
HS-Huffman 21 52 59 55

Table 1: Accuracy of various Skip-gram 300-dimensional els@n the analogical reasoning task
as defined in[[8]. NEGk: stands for Negative Sampling withnegative samples for each positive
sample; NCE stands for Noise Contrastive Estimation andHdfman stands for the Hierarchical
Softmax with the frequency-based Huffman codes.

where f(w;) is the frequency of wordy; andt is a chosen threshold, typically around=>.
We chose this subsampling formula because it aggressiublyasnples words whose frequency
is greater thart while preserving the ranking of the frequencies. Althoulgis subsampling for-
mula was chosen heuristically, we found it to work well ingiree. It accelerates learning and even
significantly improves the accuracy of the learned vectbth@rare words, as will be shown in the
following sections.

3 Empirical Results

In this section we evaluate the Hierarchical Softmax (H)isN Contrastive Estimation, Negative
Sampling, and subsampling of the training words. We usedniogical reasoning tdkitroduced
by Mikolov et al. [8]. The task consists of analogies such@ermany” : “Berlin” :: “France” : ?,
which are solved by finding a vectarsuch that vec) is closest to vec(“Berlin”) - vec(“Germany”)
+ vec(“France”) according to the cosine distance (we distae input words from the search). This
specific example is considered to have been answered dgrifestis “Paris”. The task has two
broad categories: the syntactic analogies (such as “quitddickly” :: “slow” : “slowly”) and the
semantic analogies, such as the country to capital cityioalship.

For training the Skip-gram models, we have used a large etatagsisting of various news articles
(an internal Google dataset with one billion words). We dided from the vocabulary all words

that occurred less than 5 times in the training data, whishlted in a vocabulary of size 692K.

The performance of various Skip-gram models on the wordogyalest set is reported in Taljle 1.

The table shows that Negative Sampling outperforms thedritbical Softmax on the analogical

reasoning task, and has even slightly better performamaeettte Noise Contrastive Estimation. The
subsampling of the frequent words improves the trainingedmeveral times and makes the word
representations significantly more accurate.

It can be argued that the linearity of the skip-gram modelesdts vectors more suitable for such
linear analogical reasoning, but the results of Mikolovle{& also show that the vectors learned
by the standard sigmoidal recurrent neural networks (whrehhighly non-linear) improve on this
task significantly as the amount of the training data in@sasuggesting that non-linear models also
have a preference for a linear structure of the word reptatens.

4 Learning Phrases

As discussed earlier, many phrases have a meaning that & siitple composition of the mean-
ings of its individual words. To learn vector representatior phrases, we first find words that
appear frequently together, and infrequently in otherexist For example, “New York Times” and
“Toronto Maple Leafs” are replaced by unique tokens in théing data, while a bigram “this is”
will remain unchanged.

Icode. googl e. conT p/ wor d2vec/ sour ce/ br owse/ t r unk/ quest i ons- wor ds. t xt


code.google.com/p/word2vec/source/browse/trunk/questions-words.txt

Newspapers
New York New York Times Baltimore Baltimore Sun
San Jose San Jose Mercury News Cincinnati Cincinnati Enquirer|
NHL Teams
Boston Boston Bruins Montreal Montreal Canadiens
Phoenix Phoenix Coyotes Nashville Nashville Predatorg
NBA Teams
Detroit Detroit Pistons Toronto Toronto Raptors
Oakland Golden State Warriorg Memphis Memphis Grizzlies
Airlines
Austria Austrian Airlines Spain Spainair
Belgium Brussels Airlines Greece Aegean Airlines
Company executives
Steve Ballmer Microsoft Larry Page Google
Samuel J. Palmisano IBM Werner Vogels Amazon

Table 2: Examples of the analogical reasoning task for gsréthe full test set has 3218 examples).
The goal is to compute the fourth phrase using the first tHoee best model achieved an accuracy
of 72% on this dataset.

This way, we can form many reasonable phrases without grieatleasing the size of the vocabu-
lary; in theory, we can train the Skip-gram model using afjrams, but that would be too memory
intensive. Many techniques have been previously develtpigkntify phrases in the text; however,
it is out of scope of our work to compare them. We decided toausienple data-driven approach,
where phrases are formed based on the unigram and bigrartscasimg

counfw;w;) — ¢
counfw;) x countw;)

scorgw;, w;) = (6)
Thed is used as a discounting coefficient and prevents too margsphrconsisting of very infre-
guent words to be formed. The bigrams with score above theerhthreshold are then used as
phrases. Typically, we run 2-4 passes over the trainingwiledecreasing threshold value, allow-
ing longer phrases that consists of several words to be fibritve evaluate the quality of the phrase
representations using a new analogical reasoning taskttudwes phrases. Taldlé 2 shows examples
of the five categories of analogies used in this task. Thiss#ats publicly available on the Wb

4.1 Phrase Skip-Gram Results

Starting with the same news data as in the previous expetanee first constructed the phrase
based training corpus and then we trained several Skip-grandels using different hyper-
parameters. As before, we used vector dimensionality 3@@antext size 5. This setting already
achieves good performance on the phrase dataset, and dlisate quickly compare the Negative
Sampling and the Hierarchical Softmax, both with and wittembsampling of the frequent tokens.
The results are summarized in Table 3.

The results show that while Negative Sampling achieves pertable accuracy even with= 5,
usingk = 15 achieves considerably better performance. Surprisingtjle we found the Hierar-
chical Softmax to achieve lower performance when traingtdaut subsampling, it became the best
performing method when we downsampled the frequent wordiés §hows that the subsampling
can result in faster training and can also improve accuetdgast in some cases.

Zcode. googl e. cond p/ wor d2vec/ sour ce/ br owse/ tr unk/ quest i ons- phr ases. t xt

Method Dimensionality | No subsampling [%]] 10~ subsampling [%]

NEG-5 300 24 27

NEG-15 300 27 42
HS-Huffman 300 19 a7

Table 3: Accuracies of the Skip-gram models on the phrasagyaataset. The models were
trained on approximately one billion words from the newsdat.


code.google.com/p/word2vec/source/browse/trunk/questions-phrases.txt

NEG-15 with10~> subsampling] HS with 10~° subsampling
Vasco de Gamg Lingsugur Italian explorer
Lake Baikal Great Rift Valley Aral Sea
Alan Bean Rebbeca Naomi moonwalker
lonian Sea Ruegen lonian Islands
chess master chess grandmaster Garry Kasparov

Table 4: Examples of the closest entities to the given sHodges, using two different models.

Czech + currency] Vietnam + capital| German + airlines | Russian + river French + actress
koruna Hanoi airline Lufthansa Moscow Juliette Binoche
Check crown Ho Chi Minh City carrier Lufthansa \olga River Vanessa Paradis
Polish zolty Viet Nam flag carrier Lufthansa upriver Charlotte Gainsbourg
CTK Vietnamese Lufthansa Russia Cecile De

Table 5: Vector compositionality using element-wise addit Four closest tokens to the sum of two
vectors are shown, using the best Skip-gram model.

To maximize the accuracy on the phrase analogy task, weasedsthe amount of the training data
by using a dataset with about 33 billion words. We used theahibical softmax, dimensionality
of 1000, and the entire sentence for the context. This it a model that reached an accuracy
of 72%. We achieved lower accuracy 66% when we reduced the sizeedfdming dataset to 6B
words, which suggests that the large amount of the trainatg id crucial.

To gain further insight into how different the represertasi learned by different models are, we did
inspect manually the nearest neighbours of infrequentsgisrasing various models. In Table 4, we
show a sample of such comparison. Consistently with theipuewesults, it seems that the best
representations of phrases are learned by a model with éharbhical softmax and subsampling.

5 Additive Compositionality

We demonstrated that the word and phrase representatemnetéby the Skip-gram model exhibit
a linear structure that makes it possible to perform premigdogical reasoning using simple vector
arithmetics. Interestingly, we found that the Skip-grapresentations exhibit another kind of linear
structure that makes it possible to meaningfully combinedsdy an element-wise addition of their
vector representations. This phenomenon is illustratdaine 5.

The additive property of the vectors can be explained bydaspg the training objective. The word
vectors are in a linear relationship with the inputs to thignsax nonlinearity. As the word vectors
are trained to predict the surrounding words in the sente¢heersectors can be seen as representing
the distribution of the context in which a word appears. Ehealues are related logarithmically
to the probabilities computed by the output layer, so the sfitwo word vectors is related to the
product of the two context distributions. The product wahnkse as the AND function: words that
are assigned high probabilities by both word vectors willehaigh probability, and the other words
will have low probability. Thus, if “Volga River” appearsdquently in the same sentence together
with the words “Russian” and “river”, the sum of these two di@ectors will result in such a feature
vector that is close to the vector of “Volga River”.

6 Comparison to Published Word Representations

Many authors who previously worked on the neural networleaspresentations of words have
published their resulting models for further use and coiispar amongst the most well known au-
thors are Collobert and Westan [2], Turian et @l.l[17], andivend Hinton [10]. We downloaded
their word vectors from the wEbMikolov et al. [€] have already evaluated these word regmés:
tions on the word analogy task, where the Skip-gram modéleaed the best performance with a
huge margin.

*http: // met aopti m ze. cond proj ect s/ wor dr epr s/


http://metaoptimize.com/projects/wordreprs/

Model Redmond Havel ninjutsu graffiti capitulate
(training time)
Collobert (50d) conyers plauen reiki cheesecake| abdicate
(2 months) lubbock dzerzhinsky kohona gossip accede
keene osterreich karate dioramas rearm
Turian (200d) McCarthy Jewell - gunfire -
(few weeks) Alston Arzu - emotion -
Cousins Ovitz - impunity -
Mnih (100d) Podhurst Pontiff - anaesthetic§ Mavericks
(7 days) Harlang Pinochet - monkeys planning
Agarwal Rodionov - Jews hesitated
Skip-Phrase Redmond Wash. Vaclav Havel ninja spray paint | capitulation
(1000d, 1 day) || Redmond Washington president Vaclav Have| martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship  taggers capitulating

Table 6: Examples of the closest tokens given various wahkmmodels and the Skip-gram model
trained on phrases using over 30 billion training words. Arpey cell means that the word was not
in the vocabulary.

To give more insight into the difference of the quality of tbarned vectors, we provide empirical
comparison by showing the nearest neighbours of infrequertds in Tabl€b. These examples show
that the big Skip-gram model trained on a large corpus wisibltperforms all the other models in
the quality of the learned representations. This can bibattd in part to the fact that this model
has been trained on about 30 billion words, which is abouttwiiree orders of magnitude more
data than the typical size used in the prior work. Intergdyinalthough the training set is much
larger, the training time of the Skip-gram model is just &fi@n of the time complexity required by
the previous model architectures.

7 Conclusion

This work has several key contributions. We show how to tdistributed representations of words
and phrases with the Skip-gram model and demonstrate that ttepresentations exhibit linear
structure that makes precise analogical reasoning pesdibk techniques introduced in this paper
can be used also for training the continuous bag-of-wordsatiatroduced in[[B].

We successfully trained models on several orders of madmitaore data than the previously pub-
lished models, thanks to the computationally efficient madehitecture. This results in a great
improvement in the quality of the learned word and phrasesssmtations, especially for the rare
entities. We also found that the subsampling of the frequamts results in both faster training
and significantly better representations of uncommon wofd®ther contribution of our paper is
the Negative sampling algorithm, which is an extremely $atmaining method that learns accurate
representations especially for frequent words.

The choice of the training algorithm and the hyper-paramssgkection is a task specific decision,
as we found that different problems have different optimgldrparameter configurations. In our
experiments, the most crucial decisions that affect théopmance are the choice of the model
architecture, the size of the vectors, the subsamplingaatithe size of the training window.

A very interesting result of this work is that the word vestoan be somewhat meaningfully com-
bined using just simple vector addition. Another approaohéarning representations of phrases
presented in this paper is to simply represent the phraghsavgingle token. Combination of these
two approaches gives a powerful yet simple way how to reptdsager pieces of text, while hav-
ing minimal computational complexity. Our work can thus bersas complementary to the existing
approach that attempts to represent phrases using rezunaivix-vector operations [16].

We made the code for training the word and phrase vectorsllmasthe techniques described in this
paper available as an open-source prlject

4code. googl e. con p/ wor d2vec
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