Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,9 +10,9 @@ from ultralytics import YOLO
|
|
10 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True)
|
11 |
path = [['image_0.jpg'], ['image_1.jpg']]
|
12 |
video_path = [['TresPass_Detection_1.mp4']]
|
13 |
-
# area = [(215, 180), (
|
14 |
-
area = [(
|
15 |
-
|
16 |
# def show_preds_video(video_path):
|
17 |
def show_preds_video():
|
18 |
cap = cv2.VideoCapture('TresPass_Detection_1.mp4')
|
@@ -22,12 +22,14 @@ def show_preds_video():
|
|
22 |
if not ret:
|
23 |
break
|
24 |
count += 1
|
25 |
-
if count %
|
26 |
continue
|
27 |
# frame = cv2.imread(video_path)
|
|
|
28 |
frame=cv2.resize(frame,(1020,600))
|
29 |
frame_copy = frame.copy()
|
30 |
-
|
|
|
31 |
|
32 |
results=model(frame)
|
33 |
for index, row in results.pandas().xyxy[0].iterrows():
|
@@ -42,12 +44,14 @@ def show_preds_video():
|
|
42 |
|
43 |
if ('person') in d:
|
44 |
results = cv2.pointPolygonTest(np.array(area, np.int32), ((cx,cy)), False)
|
|
|
|
|
45 |
if results >0:
|
46 |
cv2.rectangle(frame_copy,(x1,y1),(x2,y2),(0,0,255),2)
|
47 |
cv2.putText(frame_copy,str(d),(x1,y1),cv2.FONT_HERSHEY_SIMPLEX,1,(0,0,255),1)
|
48 |
-
cv2.putText(frame_copy,str("Alert !!! Trespasser detected !!!"),(50,
|
49 |
|
50 |
-
|
51 |
|
52 |
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
53 |
|
@@ -62,52 +66,14 @@ interface_video = gr.Interface(
|
|
62 |
fn=show_preds_video,
|
63 |
inputs=inputs_video,
|
64 |
outputs=outputs_video,
|
65 |
-
title="
|
66 |
examples=video_path,
|
67 |
-
cache_examples=
|
|
|
68 |
)
|
69 |
|
70 |
gr.TabbedInterface(
|
71 |
[interface_video],
|
72 |
# [interface_image, interface_video],
|
73 |
tab_names=['Video inference']
|
74 |
-
).queue().launch(width=
|
75 |
-
|
76 |
-
|
77 |
-
# def show_preds_image(image_path):
|
78 |
-
# frame = cv2.imread(image_path)
|
79 |
-
# frame=cv2.resize(frame,(1020,600))
|
80 |
-
# results=model(frame)
|
81 |
-
# for index, row in results.pandas().xyxy[0].iterrows():
|
82 |
-
# x1 = int(row['xmin'])
|
83 |
-
# y1 = int(row['ymin'])
|
84 |
-
# x2 = int(row['xmax'])
|
85 |
-
# y2 = int(row['ymax'])
|
86 |
-
# d=(row['name'])
|
87 |
-
|
88 |
-
# cx=int(x1+x2)//2
|
89 |
-
# cy=int(y1+y2)//2
|
90 |
-
|
91 |
-
# if ('person') in d:
|
92 |
-
# results = cv2.pointPolygonTest(np.array(area, np.int32), ((cx,cy)), False)
|
93 |
-
# if results >0:
|
94 |
-
# cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
|
95 |
-
# cv2.putText(frame,str(d),(x1,y1),cv2.FONT_HERSHEY_PLAIN,1,(255,0,0),2)
|
96 |
-
|
97 |
-
# cv2.polylines(frame, [np.array(area, np.int32)], True, (0,255,0), 2)
|
98 |
-
# return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
99 |
-
|
100 |
-
# inputs_image = [
|
101 |
-
# gr.components.Image(type="filepath", label="Input Image"),
|
102 |
-
# ]
|
103 |
-
# outputs_image = [
|
104 |
-
# gr.components.Image(type="numpy", label="Output Image"),
|
105 |
-
# ]
|
106 |
-
# interface_image = gr.Interface(
|
107 |
-
# fn=show_preds_image,
|
108 |
-
# inputs=inputs_image,
|
109 |
-
# outputs=outputs_image,
|
110 |
-
# title="Parking space counter",
|
111 |
-
# examples=path,
|
112 |
-
# cache_examples=False,
|
113 |
-
# )
|
|
|
10 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True)
|
11 |
path = [['image_0.jpg'], ['image_1.jpg']]
|
12 |
video_path = [['TresPass_Detection_1.mp4']]
|
13 |
+
# area = [(215, 180), (110, 75), (370, 55), (520, 140), (215, 180) ]
|
14 |
+
# area = [(190, 180), (100, 75), (360, 55), (510, 140), (190, 180) ]
|
15 |
+
area = [(215, 180), (110, 80), (360, 55), (510, 140), (215, 180) ]
|
16 |
# def show_preds_video(video_path):
|
17 |
def show_preds_video():
|
18 |
cap = cv2.VideoCapture('TresPass_Detection_1.mp4')
|
|
|
22 |
if not ret:
|
23 |
break
|
24 |
count += 1
|
25 |
+
if count % 8 != 0:
|
26 |
continue
|
27 |
# frame = cv2.imread(video_path)
|
28 |
+
|
29 |
frame=cv2.resize(frame,(1020,600))
|
30 |
frame_copy = frame.copy()
|
31 |
+
|
32 |
+
cv2.polylines(frame_copy, [np.array(area, np.int32)], True, (0,255,0), 2)
|
33 |
|
34 |
results=model(frame)
|
35 |
for index, row in results.pandas().xyxy[0].iterrows():
|
|
|
44 |
|
45 |
if ('person') in d:
|
46 |
results = cv2.pointPolygonTest(np.array(area, np.int32), ((cx,cy)), False)
|
47 |
+
# results = cv2.pointPolygonTest(np.array(area, np.int32), ((x2,y1)), False)
|
48 |
+
# results = cv2.pointPolygonTest(np.array(area, np.int32), ((x2,y2)), False)
|
49 |
if results >0:
|
50 |
cv2.rectangle(frame_copy,(x1,y1),(x2,y2),(0,0,255),2)
|
51 |
cv2.putText(frame_copy,str(d),(x1,y1),cv2.FONT_HERSHEY_SIMPLEX,1,(0,0,255),1)
|
52 |
+
cv2.putText(frame_copy,str("Alert !!! Trespasser detected !!!"),(50,300),cv2.FONT_HERSHEY_PLAIN,2,(0,0,255),3)
|
53 |
|
54 |
+
|
55 |
|
56 |
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
57 |
|
|
|
66 |
fn=show_preds_video,
|
67 |
inputs=inputs_video,
|
68 |
outputs=outputs_video,
|
69 |
+
title="Security - Trespasser monitoring ",
|
70 |
examples=video_path,
|
71 |
+
cache_examples=True,
|
72 |
+
|
73 |
)
|
74 |
|
75 |
gr.TabbedInterface(
|
76 |
[interface_video],
|
77 |
# [interface_image, interface_video],
|
78 |
tab_names=['Video inference']
|
79 |
+
).queue().launch(width=100, height = 100)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|