Spaces:
Build error
Build error
Update app.py
Browse filesAdded comments
app.py
CHANGED
|
@@ -8,27 +8,23 @@ import numpy as np
|
|
| 8 |
from ultralytics import YOLO
|
| 9 |
import yolov5
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
'https://www.shutterstock.com/shutterstock/photos/318604739/display_1500/stock-photo-highway-and-container-truck-at-china-318604739.jpg'
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
file = requests.get(url)
|
| 22 |
-
open(save_name, 'wb').write(file.content)
|
| 23 |
-
|
| 24 |
-
for i, url in enumerate(file_urls):
|
| 25 |
-
download_file(
|
| 26 |
-
file_urls[i],
|
| 27 |
-
f"image_{i}.jpg"
|
| 28 |
-
)
|
| 29 |
|
| 30 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
|
|
|
| 32 |
def yolov5_inference(
|
| 33 |
image: gr.inputs.Image = None,
|
| 34 |
model_path: gr.inputs.Dropdown = None,
|
|
@@ -36,18 +32,24 @@ def yolov5_inference(
|
|
| 36 |
conf_threshold: gr.inputs.Slider = 0.25,
|
| 37 |
iou_threshold: gr.inputs.Slider = 0.45 ):
|
| 38 |
|
| 39 |
-
|
| 40 |
model = yolov5.load(model_path, device="cpu")
|
|
|
|
|
|
|
| 41 |
model.conf = conf_threshold
|
| 42 |
model.iou = iou_threshold
|
|
|
|
|
|
|
| 43 |
results = model([image], size=image_size)
|
|
|
|
|
|
|
| 44 |
crops = results.crop(save=False)
|
| 45 |
img_crops = []
|
| 46 |
for i in range(len(crops)):
|
| 47 |
img_crops.append(crops[i]["im"][..., ::-1])
|
| 48 |
return results.render()[0], img_crops
|
| 49 |
|
| 50 |
-
|
| 51 |
inputs = [
|
| 52 |
gr.inputs.Image(type="pil", label="Input Image"),
|
| 53 |
gr.inputs.Dropdown(["Crime_Y5.pt","yolov5s.pt", "yolov5m.pt", "yolov5l.pt", "yolov5x.pt"], label="Model", default = 'Crime_Y5.pt'),
|
|
@@ -56,15 +58,19 @@ inputs = [
|
|
| 56 |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
| 57 |
]
|
| 58 |
|
|
|
|
| 59 |
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
| 60 |
outputs_crops = gr.Gallery(label="Object crop")
|
| 61 |
-
|
|
|
|
| 62 |
description = "YOLOv5 is a family of object detection models pretrained on COCO dataset. This model is a pip implementation of the original YOLOv5 model."
|
| 63 |
|
|
|
|
| 64 |
examples = [['1.jpg', 'Crime_Y5.pt', 640, 0.35, 0.45]
|
| 65 |
,['2.jpg', 'Crime_Y5.pt', 640, 0.35, 0.45]
|
| 66 |
,['4.jpg', 'Crime_Y5.pt', 640, 0.35, 0.45]]
|
| 67 |
|
|
|
|
| 68 |
demo_app = gr.Interface(
|
| 69 |
fn=yolov5_inference,
|
| 70 |
inputs=inputs,
|
|
|
|
| 8 |
from ultralytics import YOLO
|
| 9 |
import yolov5
|
| 10 |
|
| 11 |
+
# Image download
|
| 12 |
+
# file_urls = [
|
| 13 |
+
# ]
|
|
|
|
| 14 |
|
| 15 |
+
# def download_file(url, save_name):
|
| 16 |
+
# url = url
|
| 17 |
+
# if not os.path.exists(save_name):
|
| 18 |
+
# file = requests.get(url)
|
| 19 |
+
# open(save_name, 'wb').write(file.content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
# for i, url in enumerate(file_urls):
|
| 22 |
+
# download_file(
|
| 23 |
+
# file_urls[i],
|
| 24 |
+
# f"image_{i}.jpg"
|
| 25 |
+
# )
|
| 26 |
|
| 27 |
+
# Function for inference
|
| 28 |
def yolov5_inference(
|
| 29 |
image: gr.inputs.Image = None,
|
| 30 |
model_path: gr.inputs.Dropdown = None,
|
|
|
|
| 32 |
conf_threshold: gr.inputs.Slider = 0.25,
|
| 33 |
iou_threshold: gr.inputs.Slider = 0.45 ):
|
| 34 |
|
| 35 |
+
# Loading Yolo V5 model
|
| 36 |
model = yolov5.load(model_path, device="cpu")
|
| 37 |
+
|
| 38 |
+
# Setting model configuration
|
| 39 |
model.conf = conf_threshold
|
| 40 |
model.iou = iou_threshold
|
| 41 |
+
|
| 42 |
+
# Inference
|
| 43 |
results = model([image], size=image_size)
|
| 44 |
+
|
| 45 |
+
# Cropping the predictions
|
| 46 |
crops = results.crop(save=False)
|
| 47 |
img_crops = []
|
| 48 |
for i in range(len(crops)):
|
| 49 |
img_crops.append(crops[i]["im"][..., ::-1])
|
| 50 |
return results.render()[0], img_crops
|
| 51 |
|
| 52 |
+
# gradio Input
|
| 53 |
inputs = [
|
| 54 |
gr.inputs.Image(type="pil", label="Input Image"),
|
| 55 |
gr.inputs.Dropdown(["Crime_Y5.pt","yolov5s.pt", "yolov5m.pt", "yolov5l.pt", "yolov5x.pt"], label="Model", default = 'Crime_Y5.pt'),
|
|
|
|
| 58 |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
| 59 |
]
|
| 60 |
|
| 61 |
+
# gradio Output
|
| 62 |
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
| 63 |
outputs_crops = gr.Gallery(label="Object crop")
|
| 64 |
+
|
| 65 |
+
title = "Crime detection using custom trained Yolo model"
|
| 66 |
description = "YOLOv5 is a family of object detection models pretrained on COCO dataset. This model is a pip implementation of the original YOLOv5 model."
|
| 67 |
|
| 68 |
+
# gradio examples: "Image", "Model", "Image Size", "Confidence Threshold", "IOU Threshold"
|
| 69 |
examples = [['1.jpg', 'Crime_Y5.pt', 640, 0.35, 0.45]
|
| 70 |
,['2.jpg', 'Crime_Y5.pt', 640, 0.35, 0.45]
|
| 71 |
,['4.jpg', 'Crime_Y5.pt', 640, 0.35, 0.45]]
|
| 72 |
|
| 73 |
+
# gradio app launch
|
| 74 |
demo_app = gr.Interface(
|
| 75 |
fn=yolov5_inference,
|
| 76 |
inputs=inputs,
|