Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,45 +6,26 @@ import torch
|
|
6 |
|
7 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
new_user_input_ids = input
|
12 |
-
response = openai.Completion.create(
|
13 |
-
model="davinci:ft-placeholder-2022-12-10-04-13-26",
|
14 |
-
prompt=input
|
15 |
-
temperature=0.13,
|
16 |
-
max_tokens=310,
|
17 |
-
top_p=1,
|
18 |
-
frequency_penalty=0.36,
|
19 |
-
presence_penalty=1.25
|
20 |
-
)
|
21 |
-
|
22 |
-
# generate a response
|
23 |
-
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
|
24 |
|
25 |
-
|
26 |
-
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
27 |
-
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
|
28 |
-
return response, history
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
34 |
-
|
35 |
-
# append the new user input tokens to the chat history
|
36 |
-
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
37 |
-
|
38 |
-
# generate a response
|
39 |
response = openai.Completion.create(
|
40 |
-
model="
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
max_tokens=608,
|
45 |
top_p=1,
|
46 |
-
frequency_penalty=0,
|
47 |
-
presence_penalty=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
gr.Interface(fn=predict,
|
50 |
inputs=["text", "state"],
|
|
|
6 |
|
7 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
8 |
|
9 |
+
def predict(input, history=[]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
new_user_input_ids = input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
response = openai.Completion.create(
|
13 |
+
model="davinci:ft-placeholder-2022-12-10-04-13-26",
|
14 |
+
prompt=input
|
15 |
+
temperature=0.13,
|
16 |
+
max_tokens=310,
|
|
|
17 |
top_p=1,
|
18 |
+
frequency_penalty=0.36,
|
19 |
+
presence_penalty=1.25
|
20 |
+
)
|
21 |
+
|
22 |
+
# generate a response
|
23 |
+
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
|
24 |
+
|
25 |
+
# convert the tokens to text, and then split the responses into lines
|
26 |
+
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
27 |
+
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
|
28 |
+
return response, history
|
29 |
|
30 |
gr.Interface(fn=predict,
|
31 |
inputs=["text", "state"],
|