Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,60 +4,52 @@ import requests
|
|
4 |
from PIL import Image
|
5 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
6 |
from io import BytesIO
|
7 |
-
|
8 |
from llama_index.llms.palm import PaLM
|
9 |
from llama_index import ServiceContext, VectorStoreIndex, Document
|
10 |
from llama_index.memory import ChatMemoryBuffer
|
11 |
import os
|
12 |
import datetime
|
13 |
-
from PIL import Image
|
14 |
-
import io
|
15 |
|
16 |
# Set up the title of the application
|
17 |
-
st.title("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Initialize the cookie manager
|
20 |
cookie_manager = stx.CookieManager()
|
21 |
|
22 |
-
@st.cache_resource
|
23 |
-
def get_vision_model():
|
24 |
-
model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224")
|
25 |
-
processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
|
26 |
-
return model, processor
|
27 |
-
|
28 |
-
model, processor = get_vision_model()
|
29 |
-
|
30 |
# Function to get image caption via Kosmos2.
|
31 |
@st.cache_data
|
32 |
def get_image_caption(image_data):
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
image = Image.open(io.BytesIO(image_data.read()))
|
41 |
-
|
42 |
-
model, processor = get_vision_model()
|
43 |
-
|
44 |
-
prompt = "<grounding>An image of"
|
45 |
-
# Pass the PIL image to the processor
|
46 |
-
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
47 |
-
|
48 |
-
generated_ids = model.generate(
|
49 |
-
pixel_values=inputs["pixel_values"],
|
50 |
-
input_ids=inputs["input_ids"][:, :-1],
|
51 |
-
attention_mask=inputs["attention_mask"][:, :-1],
|
52 |
-
img_features=None,
|
53 |
-
img_attn_mask=inputs["img_attn_mask"][:, :-1],
|
54 |
-
use_cache=True,
|
55 |
-
max_new_tokens=64,
|
56 |
)
|
57 |
-
|
58 |
-
|
59 |
-
text_description, entities = processor.post_process_generation(generated_text)
|
60 |
-
|
61 |
return text_description
|
62 |
|
63 |
# Function to create the chat engine.
|
@@ -92,46 +84,49 @@ def clear_chat():
|
|
92 |
def on_image_upload():
|
93 |
clear_chat()
|
94 |
|
95 |
-
#
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
st.
|
108 |
-
|
109 |
-
#
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
st.
|
115 |
-
|
116 |
-
# Display
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
if
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
135 |
# Append user message to the session state
|
136 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
137 |
|
@@ -140,23 +135,31 @@ if user_input:
|
|
140 |
st.markdown(user_input)
|
141 |
|
142 |
# Call the chat engine to get the response if an image has been uploaded
|
143 |
-
if image_file:
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
with st.chat_message("assistant"):
|
152 |
-
st.markdown(response)
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
|
159 |
|
160 |
# Set Replicate and Google API keys
|
161 |
-
|
162 |
os.environ["GOOGLE_API_KEY"] = st.secrets['GOOGLE_API_KEY']
|
|
|
4 |
from PIL import Image
|
5 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
6 |
from io import BytesIO
|
7 |
+
import replicate
|
8 |
from llama_index.llms.palm import PaLM
|
9 |
from llama_index import ServiceContext, VectorStoreIndex, Document
|
10 |
from llama_index.memory import ChatMemoryBuffer
|
11 |
import os
|
12 |
import datetime
|
|
|
|
|
13 |
|
14 |
# Set up the title of the application
|
15 |
+
#st.title("PaLM-Kosmos-Vision")
|
16 |
+
st.set_page_config(layout="wide")
|
17 |
+
st.write("My version of ChatGPT vision. You can upload an image and start chatting with the LLM about the image")
|
18 |
+
|
19 |
+
# Sidebar
|
20 |
+
st.sidebar.markdown('## Created By')
|
21 |
+
st.sidebar.markdown("""
|
22 |
+
[Harshad Suryawanshi](https://www.linkedin.com/in/harshadsuryawanshi/)
|
23 |
+
""")
|
24 |
+
|
25 |
+
st.sidebar.markdown('## Other Projects')
|
26 |
+
st.sidebar.markdown("""
|
27 |
+
- [AI Equity Research Analyst](https://ai-eqty-rsrch-anlyst.streamlit.app/)
|
28 |
+
- [Recasting "The Office" Scene](https://blackmirroroffice.streamlit.app/)
|
29 |
+
- [Story Generator](https://appstorycombined-agaf9j4ceit.streamlit.app/)
|
30 |
+
""")
|
31 |
+
|
32 |
+
st.sidebar.markdown('## Disclaimer')
|
33 |
+
st.sidebar.markdown("""
|
34 |
+
This application is a conceptual prototype created to demonstrate the potential of Large Language Models (LLMs) in generating equity research reports. The contents generated by this application are purely illustrative and should not be construed as financial advice, endorsements, or recommendations. The author and the application do not provide any guarantee regarding the accuracy, completeness, or timeliness of the information provided.
|
35 |
+
""")
|
36 |
|
37 |
# Initialize the cookie manager
|
38 |
cookie_manager = stx.CookieManager()
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
# Function to get image caption via Kosmos2.
|
41 |
@st.cache_data
|
42 |
def get_image_caption(image_data):
|
43 |
+
input_data = {
|
44 |
+
"image": image_data,
|
45 |
+
"description_type": "Brief"
|
46 |
+
}
|
47 |
+
output = replicate.run(
|
48 |
+
"lucataco/kosmos-2:3e7b211c29c092f4bcc8853922cc986baa52efe255876b80cac2c2fbb4aff805",
|
49 |
+
input=input_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
)
|
51 |
+
# Split the output string on the newline character and take the first item
|
52 |
+
text_description = output.split('\n\n')[0]
|
|
|
|
|
53 |
return text_description
|
54 |
|
55 |
# Function to create the chat engine.
|
|
|
84 |
def on_image_upload():
|
85 |
clear_chat()
|
86 |
|
87 |
+
# Retrieve the message count from cookies
|
88 |
+
message_count = cookie_manager.get(cookie='message_count')
|
89 |
+
if message_count is None:
|
90 |
+
message_count = 0
|
91 |
+
else:
|
92 |
+
message_count = int(message_count)
|
93 |
+
|
94 |
+
# If the message limit has been reached, disable the inputs
|
95 |
+
if message_count >= 20:
|
96 |
+
st.error("Notice: The maximum message limit for this demo version has been reached.")
|
97 |
+
# Disabling the uploader and input by not displaying them
|
98 |
+
image_uploader_placeholder = st.empty() # Placeholder for the uploader
|
99 |
+
chat_input_placeholder = st.empty() # Placeholder for the chat input
|
100 |
+
else:
|
101 |
+
# Add a clear chat button
|
102 |
+
if st.button("Clear Chat"):
|
103 |
+
clear_chat()
|
104 |
+
|
105 |
+
# Image upload section.
|
106 |
+
image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"], key="uploaded_image", on_change=on_image_upload)
|
107 |
+
if image_file:
|
108 |
+
# Display the uploaded image at a standard width.
|
109 |
+
st.image(image_file, caption='Uploaded Image.', width=200)
|
110 |
+
# Process the uploaded image to get a caption.
|
111 |
+
image_data = BytesIO(image_file.getvalue())
|
112 |
+
img_desc = get_image_caption(image_data)
|
113 |
+
st.write("Image Uploaded Successfully. Ask me anything about it.")
|
114 |
+
|
115 |
+
# Initialize the chat engine with the image description.
|
116 |
+
chat_engine = create_chat_engine(img_desc, os.environ["GOOGLE_API_KEY"])
|
117 |
+
|
118 |
+
# Initialize session state for messages if it doesn't exist
|
119 |
+
if "messages" not in st.session_state:
|
120 |
+
st.session_state.messages = []
|
121 |
+
|
122 |
+
# Display previous messages
|
123 |
+
for message in st.session_state.messages:
|
124 |
+
with st.chat_message(message["role"]):
|
125 |
+
st.markdown(message["content"])
|
126 |
+
|
127 |
+
# Handle new user input
|
128 |
+
user_input = st.chat_input("Ask me about the image:", key="chat_input")
|
129 |
+
if user_input:
|
130 |
# Append user message to the session state
|
131 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
132 |
|
|
|
135 |
st.markdown(user_input)
|
136 |
|
137 |
# Call the chat engine to get the response if an image has been uploaded
|
138 |
+
if image_file and user_input:
|
139 |
+
try:
|
140 |
+
with st.spinner('Waiting for the chat engine to respond...'):
|
141 |
+
# Get the response from your chat engine
|
142 |
+
response = chat_engine.chat(user_input)
|
143 |
+
|
144 |
+
# Append assistant message to the session state
|
145 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
|
146 |
|
147 |
+
# Display the assistant message
|
148 |
+
with st.chat_message("assistant"):
|
149 |
+
st.markdown(response)
|
150 |
+
|
151 |
+
except Exception as e:
|
152 |
+
st.error(f'An error occurred: {e}')
|
153 |
+
# Optionally, you can choose to break the flow here if a critical error happens
|
154 |
+
# return
|
155 |
+
|
156 |
+
# Increment the message count and update the cookie
|
157 |
+
message_count += 1
|
158 |
+
cookie_manager.set('message_count', str(message_count), expires_at=datetime.datetime.now() + datetime.timedelta(days=30))
|
159 |
+
|
160 |
|
161 |
|
162 |
|
163 |
# Set Replicate and Google API keys
|
164 |
+
os.environ['REPLICATE_API_TOKEN'] = st.secrets['REPLICATE_API_TOKEN']
|
165 |
os.environ["GOOGLE_API_KEY"] = st.secrets['GOOGLE_API_KEY']
|