AI-ANK commited on
Commit
a65cb5d
·
1 Parent(s): 493cb09

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -159
app.py CHANGED
@@ -1,250 +1,150 @@
1
- import streamlit as st
2
  import extra_streamlit_components as stx
3
  import requests
4
  from PIL import Image
 
5
  from io import BytesIO
 
6
  from llama_index.llms.palm import PaLM
7
- from llama_index import ServiceContext, VectorStoreIndex, Document, StorageContext, load_index_from_storage
8
  from llama_index.memory import ChatMemoryBuffer
9
  import os
10
  import datetime
11
- from llama_index.llms import Cohere
12
- from llama_index.query_engine import CitationQueryEngine
13
-
14
-
15
-
16
- #imports for resnet
17
- from transformers import AutoFeatureExtractor, ResNetForImageClassification
18
- import torch
19
- from io import BytesIO
20
 
21
  # Set up the title of the application
22
- st.title("AInimal Go!")
23
- #st.set_page_config(layout="wide")
24
- st.write("My Pokemon Go inspired 'AInimal Go!' app. You can upload an image or snap a picture of an animal and start chatting with it")
25
 
26
  # Sidebar
27
  st.sidebar.markdown('## Created By')
28
  st.sidebar.markdown("""
29
- Harshad Suryawanshi
30
- - [Linkedin](https://www.linkedin.com/in/harshadsuryawanshi/)
31
- - [Medium](https://harshadsuryawanshi.medium.com/)
32
  """)
33
 
34
-
35
  st.sidebar.markdown('## Other Projects')
36
  st.sidebar.markdown("""
37
- - [Building My Own GPT4-V with PaLM and Kosmos](https://lnkd.in/dawgKZBP)
38
  - [AI Equity Research Analyst](https://ai-eqty-rsrch-anlyst.streamlit.app/)
39
  - [Recasting "The Office" Scene](https://blackmirroroffice.streamlit.app/)
40
  - [Story Generator](https://appstorycombined-agaf9j4ceit.streamlit.app/)
41
- """)
42
-
43
  st.sidebar.markdown('## Disclaimer')
44
  st.sidebar.markdown("""
45
- This application, titled 'AInimal Go!', is a conceptual prototype designed to demonstrate the innovative use of Large Language Models (LLMs) in enabling interactive conversations with animals through images. While the concept is vaguely inspired by the interactive and augmented reality elements popularized by games like Pokemon Go, it does not use any assets, characters, or intellectual property from the Pokemon franchise. The interactions and conversations generated by this application are entirely fictional and created for entertainment and educational purposes. They should not be regarded as factual or accurate representations of animal behavior or communication. The author and the application do not hold any affiliation with the Pokemon brand or its creators, and no endorsement from them is implied. Users are encouraged to use this application responsibly and with an understanding of its purely illustrative nature.
46
  """)
47
 
48
  # Initialize the cookie manager
49
  cookie_manager = stx.CookieManager()
50
 
51
- #Function to init resnet
52
-
53
- @st.cache_resource(show_spinner="Initializing ResNet model for image classification. Please wait...")
54
- def load_model_and_labels():
55
- # Load animal labels as a dictionary
56
- animal_labels_dict = {}
57
- with open('imagenet_animal_labels_subset.txt', 'r') as file:
58
- for line in file:
59
- parts = line.strip().split(':')
60
- class_id = int(parts[0].strip())
61
- label_name = parts[1].strip().strip("'")
62
- animal_labels_dict[class_id] = label_name
63
-
64
- # Initialize feature extractor and model
65
- feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-18")
66
- model = ResNetForImageClassification.from_pretrained("microsoft/resnet-18")
67
-
68
- return feature_extractor, model, animal_labels_dict
69
-
70
- feature_extractor, model, animal_labels_dict = load_model_and_labels()
71
-
72
- # Function to predict image label
73
  @st.cache_data
74
  def get_image_caption(image_data):
75
- image = Image.open(image_data)
76
- inputs = feature_extractor(images=image, return_tensors="pt")
77
-
78
- with torch.no_grad():
79
- logits = model(**inputs).logits
80
-
81
- predicted_label_id = logits.argmax(-1).item()
82
- predicted_label_name = model.config.id2label[predicted_label_id]
83
- st.write(predicted_label_name)
84
- # Return the predicted animal name
85
- return predicted_label_name, predicted_label_id
86
-
87
-
88
- @st.cache_resource(show_spinner="Initializing LLM and setting up service context. Please wait...")
89
- def init_llm(api_key):
90
- # llm = PaLM(api_key=api_key)
91
- llm = Cohere(model="command", api_key=st.secrets['COHERE_API_TOKEN'])
92
-
93
- service_context = ServiceContext.from_defaults(llm=llm, embed_model="local")
94
-
95
- storage_context = StorageContext.from_defaults(persist_dir="storage")
96
- index = load_index_from_storage(storage_context, index_id="index", service_context=service_context)
97
- chatmemory = ChatMemoryBuffer.from_defaults(token_limit=1500)
98
-
99
- return llm, service_context, storage_context, index, chatmemory
100
-
101
- llm, service_context, storage_context, index, chatmemory = init_llm(os.environ["GOOGLE_API_KEY"])
102
-
103
- def is_animal(predicted_label_id):
104
- # Check if the predicted label ID is within the animal classes range
105
- return 0 <= predicted_label_id <= 398
106
-
107
 
108
  # Function to create the chat engine.
109
  @st.cache_resource
110
  def create_chat_engine(img_desc, api_key):
111
-
112
- #llm = PaLM(api_key=api_key)
113
- #service_context = ServiceContext.from_defaults(llm=llm,embed_model="local")
114
  doc = Document(text=img_desc)
115
-
116
- # Now is_animal is a boolean indicating whether the image is of an animal
117
- print("Is the image of an animal:", is_animal)
118
-
119
- query_engine = CitationQueryEngine.from_args(
120
- index,
121
- similarity_top_k=3,
122
- # here we can control how granular citation sources are, the default is 512
123
- citation_chunk_size=512,
124
- verbose=True
 
 
125
  )
126
-
127
- return query_engine
128
-
129
-
130
 
131
  # Clear chat function
132
  def clear_chat():
133
  if "messages" in st.session_state:
134
  del st.session_state.messages
135
- if "image_data" in st.session_state:
136
- del st.session_state.image_data
137
 
138
  # Callback function to clear the chat when a new image is uploaded
139
  def on_image_upload():
140
- clear_chat()
141
-
142
- # Retrieve the message count from cookies
143
- message_count = cookie_manager.get(cookie='message_count')
144
- if message_count is None:
145
- message_count = 0
146
- else:
147
  message_count = int(message_count)
148
 
149
  # If the message limit has been reached, disable the inputs
150
- #if message_count <= 20:
151
- if 0:
152
  st.error("Notice: The maximum message limit for this demo version has been reached.")
153
  # Disabling the uploader and input by not displaying them
154
  image_uploader_placeholder = st.empty() # Placeholder for the uploader
155
  chat_input_placeholder = st.empty() # Placeholder for the chat input
156
- st.stop()
157
  else:
158
  # Add a clear chat button
159
  if st.button("Clear Chat"):
160
- clear_chat()
161
 
162
  # Image upload section.
163
  image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"], key="uploaded_image", on_change=on_image_upload)
164
-
165
- col1, col2, col3 = st.columns([1, 2, 1])
166
- with col2: # Camera input will be in the middle column
167
- camera_image = st.camera_input("Take a picture", on_change=on_image_upload)
168
-
169
-
170
- # Determine the source of the image (upload or camera)
171
- if image_file is not None:
172
- image_data = BytesIO(image_file.getvalue())
173
- elif camera_image is not None:
174
- image_data = BytesIO(camera_image.getvalue())
175
- else:
176
- image_data = None
177
-
178
- if image_data:
179
  # Display the uploaded image at a standard width.
180
- st.session_state['assistant_avatar'] = image_data
181
- st.image(image_data, caption='Uploaded Image.', width=200)
182
 
183
  # Process the uploaded image to get a caption.
184
- #img_desc = get_image_caption(image_data)
185
- img_desc, label_id = get_image_caption(image_data)
186
-
187
- if not (is_animal(label_id)):
188
- #st.error("Please upload image of an animal!")
189
- st.error("Please upload image of an animal!")
190
- st.stop()
191
 
192
  # Initialize the chat engine with the image description.
193
  chat_engine = create_chat_engine(img_desc, os.environ["GOOGLE_API_KEY"])
194
- st.write("Image Uploaded Successfully. Ask me anything about it.")
195
-
196
 
197
  # Initialize session state for messages if it doesn't exist
198
  if "messages" not in st.session_state:
199
- st.session_state.messages = []
200
 
201
  # Display previous messages
202
  for message in st.session_state.messages:
203
- avatar = st.session_state['assistant_avatar'] if message["role"] == "assistant" else None
204
- with st.chat_message(message["role"], avatar = avatar):
205
- st.write(message["content"])
206
 
207
  # Handle new user input
208
  user_input = st.chat_input("Ask me about the image:", key="chat_input")
209
- if user_input:
210
- # Append user message to the session state
211
- st.session_state.messages.append({"role": "user", "content": user_input})
212
 
213
  # Display user message immediately
214
  with st.chat_message("user"):
215
- st.write(user_input)
216
 
217
  # Call the chat engine to get the response if an image has been uploaded
218
- if image_data and user_input:
219
  try:
220
  with st.spinner('Waiting for the chat engine to respond...'):
221
  # Get the response from your chat engine
222
- system_prompt=f"""
223
- You are a chatbot, able to have normal interactions. Do not make up information.
224
- You always answer in great detail and are polite. Your job is to roleplay as an {img_desc}.
225
- Remember to make {img_desc} sounds while talking but dont overdo it.
226
- """
227
-
228
- response = chat_engine.query(f"{system_prompt}. {user_input}")
229
-
230
- #response = chat_engine.chat(f"""You are a chatbot that roleplays as an animal and also makes animal sounds when chatting.
231
- #You always answer in great detail and are polite. Your responses always descriptive.
232
- #Your job is to rolelpay as the animal that is mentioned in the image the user has uploaded. Image description: {img_desc}. User question
233
- #{user_input}""")
234
-
235
  # Append assistant message to the session state
236
- st.session_state.messages.append({"role": "assistant", "content": response.response})
237
 
238
  # Display the assistant message
239
  with st.chat_message("assistant"):
240
- st.write(response.response)
241
- st.expander("hello")
242
 
243
  except Exception as e:
244
- st.error(f'An error occurred.')
245
  # Optionally, you can choose to break the flow here if a critical error happens
246
  # return
247
 
248
- # Increment the message count and update the cookie
249
  message_count += 1
250
  cookie_manager.set('message_count', str(message_count), expires_at=datetime.datetime.now() + datetime.timedelta(days=30))
 
 
 
 
 
 
1
  import extra_streamlit_components as stx
2
  import requests
3
  from PIL import Image
4
+ from transformers import AutoProcessor, AutoModelForVision2Seq
5
  from io import BytesIO
6
+ import replicate
7
  from llama_index.llms.palm import PaLM
8
+ from llama_index import ServiceContext, VectorStoreIndex, Document
9
  from llama_index.memory import ChatMemoryBuffer
10
  import os
11
  import datetime
 
 
 
 
 
 
 
 
 
12
 
13
  # Set up the title of the application
14
+ #st.title("PaLM-Kosmos-Vision")
15
+ st.set_page_config(layout="wide")
16
+ st.write("My version of ChatGPT vision. You can upload an image and start chatting with the LLM about the image")
17
 
18
  # Sidebar
19
  st.sidebar.markdown('## Created By')
20
  st.sidebar.markdown("""
21
+ [Harshad Suryawanshi](https://www.linkedin.com/in/harshadsuryawanshi/)
 
 
22
  """)
23
 
 
24
  st.sidebar.markdown('## Other Projects')
25
  st.sidebar.markdown("""
 
26
  - [AI Equity Research Analyst](https://ai-eqty-rsrch-anlyst.streamlit.app/)
27
  - [Recasting "The Office" Scene](https://blackmirroroffice.streamlit.app/)
28
  - [Story Generator](https://appstorycombined-agaf9j4ceit.streamlit.app/)
 
 
29
  st.sidebar.markdown('## Disclaimer')
30
  st.sidebar.markdown("""
31
+ This application is a conceptual prototype created to demonstrate the potential of Large Language Models (LLMs) in generating equity research reports. The contents generated by this application are purely illustrative and should not be construed as financial advice, endorsements, or recommendations. The author and the application do not provide any guarantee regarding the accuracy, completeness, or timeliness of the information provided.
32
  """)
33
 
34
  # Initialize the cookie manager
35
  cookie_manager = stx.CookieManager()
36
 
37
+ # Function to get image caption via Kosmos2.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  @st.cache_data
39
  def get_image_caption(image_data):
40
+ input_data = {
41
+ "image": image_data,
42
+ "description_type": "Brief"
43
+ }
44
+ output = replicate.run(
45
+ "lucataco/kosmos-2:3e7b211c29c092f4bcc8853922cc986baa52efe255876b80cac2c2fbb4aff805",
46
+ input=input_data
47
+ )
48
+ # Split the output string on the newline character and take the first item
49
+ text_description = output.split('\n\n')[0]
50
+ return text_description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  # Function to create the chat engine.
53
  @st.cache_resource
54
  def create_chat_engine(img_desc, api_key):
55
+ llm = PaLM(api_key=api_key)
56
+ service_context = ServiceContext.from_defaults(llm=llm)
57
+
58
  doc = Document(text=img_desc)
59
+ index = VectorStoreIndex.from_documents([doc], service_context=service_context)
60
+ chatmemory = ChatMemoryBuffer.from_defaults(token_limit=1500)
61
+
62
+ chat_engine = index.as_chat_engine(
63
+ chat_mode="context",
64
+ system_prompt=(
65
+ f"You are a chatbot, able to have normal interactions, as well as talk. "
66
+ "You always answer in great detail and are polite. Your responses always descriptive. "
67
+ "Your job is to talk about an image the user has uploaded. Image description: {img_desc}."
68
+ ),
69
+ verbose=True,
70
+ memory=chatmemory
71
  )
72
+ return chat_engine
 
 
 
73
 
74
  # Clear chat function
75
  def clear_chat():
76
  if "messages" in st.session_state:
77
  del st.session_state.messages
78
+ if "image_file" in st.session_state:
79
+ del st.session_state.image_file
80
 
81
  # Callback function to clear the chat when a new image is uploaded
82
  def on_image_upload():
 
 
 
 
 
 
 
83
  message_count = int(message_count)
84
 
85
  # If the message limit has been reached, disable the inputs
86
+ if message_count >= 20:
87
+
88
  st.error("Notice: The maximum message limit for this demo version has been reached.")
89
  # Disabling the uploader and input by not displaying them
90
  image_uploader_placeholder = st.empty() # Placeholder for the uploader
91
  chat_input_placeholder = st.empty() # Placeholder for the chat input
92
+
93
  else:
94
  # Add a clear chat button
95
  if st.button("Clear Chat"):
 
96
 
97
  # Image upload section.
98
  image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"], key="uploaded_image", on_change=on_image_upload)
99
+ if image_file:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
  # Display the uploaded image at a standard width.
101
+ st.image(image_file, caption='Uploaded Image.', width=200)
 
102
 
103
  # Process the uploaded image to get a caption.
104
+ image_data = BytesIO(image_file.getvalue())
105
+ img_desc = get_image_caption(image_data)
106
+ st.write("Image Uploaded Successfully. Ask me anything about it.")
 
 
 
 
107
 
108
  # Initialize the chat engine with the image description.
109
  chat_engine = create_chat_engine(img_desc, os.environ["GOOGLE_API_KEY"])
 
 
110
 
111
  # Initialize session state for messages if it doesn't exist
112
  if "messages" not in st.session_state:
 
113
 
114
  # Display previous messages
115
  for message in st.session_state.messages:
116
+ with st.chat_message(message["role"]):
117
+ st.markdown(message["content"])
 
118
 
119
  # Handle new user input
120
  user_input = st.chat_input("Ask me about the image:", key="chat_input")
 
 
 
121
 
122
  # Display user message immediately
123
  with st.chat_message("user"):
124
+ st.markdown(user_input)
125
 
126
  # Call the chat engine to get the response if an image has been uploaded
127
+ if image_file and user_input:
128
  try:
129
  with st.spinner('Waiting for the chat engine to respond...'):
130
  # Get the response from your chat engine
131
+ response = chat_engine.chat(user_input)
132
+
 
 
 
 
 
 
 
 
 
 
 
133
  # Append assistant message to the session state
134
+ st.session_state.messages.append({"role": "assistant", "content": response})
135
 
136
  # Display the assistant message
137
  with st.chat_message("assistant"):
138
+ st.markdown(response)
 
139
 
140
  except Exception as e:
141
+ st.error(f'An error occurred: {e}')
142
  # Optionally, you can choose to break the flow here if a critical error happens
143
  # return
144
 
 
145
  message_count += 1
146
  cookie_manager.set('message_count', str(message_count), expires_at=datetime.datetime.now() + datetime.timedelta(days=30))
147
+
148
+ # Set Replicate and Google API keys
149
+ os.environ['REPLICATE_API_TOKEN'] = st.secrets['REPLICATE_API_TOKEN']
150
+ os.environ["GOOGLE_API_KEY"] = st.secrets['GOOGLE_API_KEY']