Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +162 -0
- requirements.txt +11 -0
app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import extra_streamlit_components as stx
|
3 |
+
import requests
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
6 |
+
from io import BytesIO
|
7 |
+
import replicate
|
8 |
+
from llama_index.llms.palm import PaLM
|
9 |
+
from llama_index import ServiceContext, VectorStoreIndex, Document
|
10 |
+
from llama_index.memory import ChatMemoryBuffer
|
11 |
+
import os
|
12 |
+
import datetime
|
13 |
+
|
14 |
+
# Set up the title of the application
|
15 |
+
st.title("Image Captioning and Chat")
|
16 |
+
|
17 |
+
# Initialize the cookie manager
|
18 |
+
cookie_manager = stx.CookieManager()
|
19 |
+
|
20 |
+
@st.cache_resource
|
21 |
+
def get_vision_model():
|
22 |
+
model = AutoModelForVision2Seq.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True)
|
23 |
+
processor = AutoProcessor.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True)
|
24 |
+
return model, processor
|
25 |
+
|
26 |
+
# Function to get image caption via Kosmos2.
|
27 |
+
@st.cache_data
|
28 |
+
def get_image_caption(image_data):
|
29 |
+
|
30 |
+
model, processor = get_vision_model()
|
31 |
+
#model = AutoModelForVision2Seq.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True)
|
32 |
+
#processor = AutoProcessor.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True)
|
33 |
+
|
34 |
+
prompt = "<grounding>An image of"
|
35 |
+
inputs = processor(text=prompt, images=image_data, return_tensors="pt")
|
36 |
+
|
37 |
+
generated_ids = model.generate(
|
38 |
+
pixel_values=inputs["pixel_values"],
|
39 |
+
input_ids=inputs["input_ids"][:, :-1],
|
40 |
+
attention_mask=inputs["attention_mask"][:, :-1],
|
41 |
+
img_features=None,
|
42 |
+
img_attn_mask=inputs["img_attn_mask"][:, :-1],
|
43 |
+
use_cache=True,
|
44 |
+
max_new_tokens=64,
|
45 |
+
)
|
46 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
47 |
+
|
48 |
+
text_description, entities = processor.post_process_generation(generated_text)
|
49 |
+
|
50 |
+
#Using replicate API
|
51 |
+
# input_data = {
|
52 |
+
# "image": image_data,
|
53 |
+
# "description_type": "Brief"
|
54 |
+
# }
|
55 |
+
# output = replicate.run(
|
56 |
+
# "lucataco/kosmos-2:3e7b211c29c092f4bcc8853922cc986baa52efe255876b80cac2c2fbb4aff805",
|
57 |
+
# input=input_data
|
58 |
+
# )
|
59 |
+
# # Split the output string on the newline character and take the first item
|
60 |
+
# text_description = output.split('\n\n')[0]
|
61 |
+
return text_description
|
62 |
+
|
63 |
+
# Function to create the chat engine.
|
64 |
+
@st.cache_resource
|
65 |
+
def create_chat_engine(img_desc, api_key):
|
66 |
+
llm = PaLM(api_key=api_key)
|
67 |
+
service_context = ServiceContext.from_defaults(llm=llm)
|
68 |
+
doc = Document(text=img_desc)
|
69 |
+
index = VectorStoreIndex.from_documents([doc], service_context=service_context)
|
70 |
+
chatmemory = ChatMemoryBuffer.from_defaults(token_limit=1500)
|
71 |
+
|
72 |
+
chat_engine = index.as_chat_engine(
|
73 |
+
chat_mode="context",
|
74 |
+
system_prompt=(
|
75 |
+
f"You are a chatbot, able to have normal interactions, as well as talk. "
|
76 |
+
"You always answer in great detail and are polite. Your responses always descriptive. "
|
77 |
+
"Your job is to talk about an image the user has uploaded. Image description: {img_desc}."
|
78 |
+
),
|
79 |
+
verbose=True,
|
80 |
+
memory=chatmemory
|
81 |
+
)
|
82 |
+
return chat_engine
|
83 |
+
|
84 |
+
# Clear chat function
|
85 |
+
def clear_chat():
|
86 |
+
if "messages" in st.session_state:
|
87 |
+
del st.session_state.messages
|
88 |
+
if "image_file" in st.session_state:
|
89 |
+
del st.session_state.image_file
|
90 |
+
|
91 |
+
# Callback function to clear the chat when a new image is uploaded
|
92 |
+
def on_image_upload():
|
93 |
+
clear_chat()
|
94 |
+
|
95 |
+
# Add a clear chat button
|
96 |
+
if st.button("Clear Chat"):
|
97 |
+
clear_chat()
|
98 |
+
|
99 |
+
# Image upload section.
|
100 |
+
image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"], key="uploaded_image", on_change=on_image_upload)
|
101 |
+
if image_file:
|
102 |
+
# Display the uploaded image at a standard width.
|
103 |
+
st.image(image_file, caption='Uploaded Image.', width=200)
|
104 |
+
# Process the uploaded image to get a caption.
|
105 |
+
image_data = BytesIO(image_file.getvalue())
|
106 |
+
img_desc = get_image_caption(image_data)
|
107 |
+
st.write(f"Image description: {img_desc}")
|
108 |
+
|
109 |
+
# Initialize the chat engine with the image description.
|
110 |
+
chat_engine = create_chat_engine(img_desc, os.environ["GOOGLE_API_KEY"])
|
111 |
+
|
112 |
+
# Initialize session state for messages if it doesn't exist
|
113 |
+
if "messages" not in st.session_state:
|
114 |
+
st.session_state.messages = []
|
115 |
+
|
116 |
+
# Display previous messages
|
117 |
+
for message in st.session_state.messages:
|
118 |
+
with st.chat_message(message["role"]):
|
119 |
+
st.markdown(message["content"])
|
120 |
+
|
121 |
+
# Handle new user input
|
122 |
+
user_input = st.chat_input("Ask me about the image:", key="chat_input")
|
123 |
+
if user_input:
|
124 |
+
# Retrieve the message count from cookies
|
125 |
+
message_count = cookie_manager.get(cookie='message_count')
|
126 |
+
if message_count is None:
|
127 |
+
message_count = 0
|
128 |
+
else:
|
129 |
+
message_count = int(message_count)
|
130 |
+
|
131 |
+
# Check if the message limit has been reached
|
132 |
+
if message_count >= 20:
|
133 |
+
st.error("Notice: The maximum message limit for this demo version has been reached.")
|
134 |
+
else:
|
135 |
+
# Append user message to the session state
|
136 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
137 |
+
|
138 |
+
# Display user message immediately
|
139 |
+
with st.chat_message("user"):
|
140 |
+
st.markdown(user_input)
|
141 |
+
|
142 |
+
# Call the chat engine to get the response if an image has been uploaded
|
143 |
+
if image_file:
|
144 |
+
# Get the response from your chat engine
|
145 |
+
response = chat_engine.chat(user_input)
|
146 |
+
|
147 |
+
# Append assistant message to the session state
|
148 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
149 |
+
|
150 |
+
# Display the assistant message
|
151 |
+
with st.chat_message("assistant"):
|
152 |
+
st.markdown(response)
|
153 |
+
|
154 |
+
# Increment the message count and update the cookie
|
155 |
+
message_count += 1
|
156 |
+
cookie_manager.set('message_count', str(message_count), expires_at=datetime.datetime.now() + datetime.timedelta(days=30))
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
# Set Replicate and Google API keys
|
161 |
+
os.environ['REPLICATE_API_TOKEN'] = st.secrets['REPLICATE_API_TOKEN']
|
162 |
+
os.environ["GOOGLE_API_KEY"] = st.secrets['GOOGLE_API_KEY']
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
google-generativeai
|
3 |
+
llama-hub
|
4 |
+
llama-index
|
5 |
+
transformers
|
6 |
+
Pillow
|
7 |
+
requests
|
8 |
+
nest_asyncio
|
9 |
+
torch
|
10 |
+
extra-streamlit-components
|
11 |
+
replicate
|