Ahm-ed commited on
Commit
a0696ea
·
1 Parent(s): f402b39

Create App.py

Browse files
Files changed (1) hide show
  1. App.py +77 -0
App.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import random
4
+ import numpy as np
5
+ from PIL import Image
6
+ os.environ["SM_FRAMEWORK"] = "tf.keras"
7
+ import segmentation_models as sm
8
+ from matplotlib import pyplot as plt
9
+
10
+ from keras import backend as K
11
+ from keras.models import load_model
12
+
13
+ import gradio as gr
14
+
15
+
16
+ def jaccard_coef(y_true, y_pred):
17
+ y_true_flatten = K.flatten(y_true)
18
+ y_pred_flatten = K.flatten(y_pred)
19
+ intersection = K.sum(y_true_flatten * y_pred_flatten)
20
+ final_coef_value = (intersection + 1.0) / (K.sum(y_true_flatten) + K.sum(y_pred_flatten) - intersection + 1.0)
21
+ return final_coef_value
22
+
23
+ weights = [0.1666, 0.1666, 0.1666, 0.1666, 0.1666, 0.1666]
24
+ dice_loss = sm.losses.DiceLoss(class_weights = weights)
25
+ focal_loss = sm.losses.CategoricalFocalLoss()
26
+ total_loss = dice_loss + (1 * focal_loss)
27
+
28
+ satellite_model = load_model('model/satellite_segmentation_full.h5', custom_objects=({'dice_loss_plus_1focal_loss': total_loss, 'jaccard_coef': jaccard_coef}))
29
+
30
+
31
+ def process_input_image(image_source):
32
+ # Convert the numpy array to a PIL Image object
33
+ image = Image.fromarray(np.uint8(image_source))
34
+
35
+ # Resize the image
36
+ image = image.resize((256, 256))
37
+
38
+ # Convert the image back to a numpy array
39
+ image = np.array(image)
40
+
41
+ # Expand the dimensions of the image to match the expected input shape of the model
42
+ image = np.expand_dims(image, axis=0)
43
+
44
+ # Predict the mask for the image
45
+ prediction = satellite_model.predict(image)
46
+ predicted_image = np.argmax(prediction, axis=3)
47
+
48
+ predicted_image = predicted_image[0,:,:]
49
+ predicted_image = predicted_image * 50
50
+
51
+ return 'Predicted Masked Image', predicted_image
52
+
53
+ my_app = gr.Blocks()
54
+
55
+ with my_app:
56
+ gr.Markdown("Statellite Image Segmentation Application UI with Gradio")
57
+ with gr.Tabs():
58
+ with gr.TabItem("Select your image"):
59
+ with gr.Row():
60
+ with gr.Column():
61
+ img_source = gr.Image(label="Please select source Image", shape=(256, 256))
62
+ source_image_loader = gr.Button("Load above Image")
63
+ with gr.Column():
64
+ output_label = gr.Label(label="Image Info")
65
+ img_output = gr.Image(label="Image Output")
66
+ source_image_loader.click(
67
+ process_input_image,
68
+ [
69
+ img_source
70
+ ],
71
+ [
72
+ output_label,
73
+ img_output
74
+ ]
75
+ )
76
+
77
+ my_app.launch(debug=True)