Spaces:
Running
Running
File size: 9,194 Bytes
4f68924 d486c38 0e91585 4f68924 0e91585 4f68924 0e91585 4f68924 0e91585 4f68924 0e91585 4f68924 0e91585 4f68924 0e91585 4f68924 0e91585 4f68924 0e91585 351a77b 716c402 351a77b 716c402 351a77b 716c402 351a77b 04af2e2 716c402 04af2e2 0e91585 04af2e2 fdf393b 0e91585 04af2e2 0e91585 04af2e2 4f68924 d486c38 4f68924 720a5cf 04af2e2 4f68924 2c5fdb6 4f68924 04af2e2 4f68924 2c5fdb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import gradio as gr
import os
import shutil
import re
from PyPDF2 import PdfReader, PdfWriter
import pandas as pd
import camelot
import openpyxl
from openpyxl.utils.dataframe import dataframe_to_rows
from openpyxl.styles import numbers
from openpyxl.worksheet.table import Table, TableStyleInfo
import tempfile
def extract_pages(pdf_path, start_page, end_page, output_path):
reader = PdfReader(pdf_path)
writer = PdfWriter()
for page_num in range(start_page, end_page + 1):
if page_num <= len(reader.pages):
writer.add_page(reader.pages[page_num - 1])
with open(output_path, 'wb') as output_pdf_file:
writer.write(output_pdf_file)
def reduce_pdf(pdf_folder,reduced_pdf_folder):
if os.path.exists(reduced_pdf_folder):
shutil.rmtree(reduced_pdf_folder)
os.makedirs(reduced_pdf_folder)
for filename in os.listdir(pdf_folder):
if filename.endswith('.pdf'):
match = re.search(r'_CbCR_(\d+)(?:-(\d+))?', filename)
if match:
start_page = int(match.group(1))
end_page = int(match.group(2)) if match.group(2) else start_page
base_name = re.sub(r'_CbCR_\d+(?:-\d+)?\.pdf$', '_CbCR.pdf', filename)
pdf_path = os.path.join(pdf_folder, filename)
output_path = os.path.join(reduced_pdf_folder, base_name)
extract_pages(pdf_path, start_page, end_page, output_path)
print(f'Processed {filename} -> {base_name}')
def extract_tables_camelot(pdf_path):
# Extract tables from the PDF file using Camelot
tables = camelot.read_pdf(pdf_path, pages='all',flavor='stream')
return tables
def get_numeric_count(row):
# Get the number of numerical values in a row
return sum(1 for x in row if (pd.notna(pd.to_numeric(x.replace(",", "").strip('()'), errors='coerce')) or x in ['-','–']))
def convert_to_numeric(value):
if isinstance(value, str) and value.startswith('(') and value.endswith(')'):
value = '-' + value[1:-1]
if all(char.isdigit() or char in '-,.' for char in str(value)):
cleaned_value = pd.to_numeric(value.replace(',', ''), errors='coerce')
return cleaned_value
return value
def get_headers(dataframes):
# Get the dataframe columns name
if len(dataframes) >= 2:
df_for_columns_names = dataframes[1]
else:
df_for_columns_names = dataframes[0]
for i, row in df_for_columns_names.iterrows():
numeric_count = get_numeric_count(row)
if numeric_count >= 2:
first_numeric_idx = i
break
df_for_columns_names = df_for_columns_names.astype(str).where(pd.notna(df_for_columns_names), "")
new_header = [" ".join(filter(None, df_for_columns_names.iloc[:first_numeric_idx, col].values)) for col in range(df_for_columns_names.shape[1])]
return new_header
def clean_dataframe(df,header):
# Rule : if a row is not numerical, merge it with the next numerical one
df.columns = header
first_numeric_idx = None
for i, row in df.iterrows():
numeric_count = get_numeric_count(row)
if numeric_count >= 2:
first_numeric_idx = i
break
df = df.iloc[first_numeric_idx:]
df = df.reset_index(drop=True)
merged_rows = []
buffer = None
for i in range(len(df)):
row = df.iloc[i]
numeric_count = get_numeric_count(row)
if numeric_count < 2:
if buffer is None:
buffer = list(df.iloc[i].copy())
else:
buffer = [
" ".join(filter(lambda x: x not in [None, "None", ""], [buffer[j], df.iloc[i, j]]))
for j in range(df.shape[1])
]
merged_rows.append(i)
else:
if buffer is not None:
df.iloc[i] = [
" ".join(filter(lambda x: x not in [None, "None", ""], [buffer[j], df.iloc[i, j]]))
for j in range(df.shape[1])
]
buffer = None
clean_df = df.drop(merged_rows).reset_index(drop=True)
return clean_df
def clean_and_concatenate_tables(tables):
dataframes = [table.df for table in tables]
for i in range(len(dataframes)):
df = dataframes[i]
row_counts = df.apply(lambda row: row.notna().sum() - (row.astype(str) == "").sum(), axis=1)
col_counts = df.apply(lambda col: col.notna().sum() - (col.astype(str) == "").sum(), axis=0)
dataframes[i] = df.loc[row_counts >= 1, col_counts >= 3].reset_index(drop = True)
new_header = get_headers(dataframes)
cleaned_dfs = []
for df in dataframes:
cleaned_dfs.append(clean_dataframe(df,new_header))
concatenated_df = pd.concat(cleaned_dfs, ignore_index=True)
return concatenated_df
def convert_to_excel(reduced_pdf_folder, output_folder):
if os.path.exists(output_folder):
shutil.rmtree(output_folder)
os.makedirs(output_folder)
for filename in os.listdir(reduced_pdf_folder):
if filename.endswith('.pdf'):
pdf_path = os.path.join(reduced_pdf_folder, filename)
tables = extract_tables_camelot(pdf_path)
if tables:
concatenated_df = clean_and_concatenate_tables(tables)
excel_path = os.path.join(output_folder, filename.replace('.pdf', '.xlsx'))
for col in concatenated_df.columns:
if any(str(cell).strip() and not str(cell).strip().startswith('(') for cell in concatenated_df[col]):
concatenated_df[col] = concatenated_df[col].apply(convert_to_numeric)
wb = openpyxl.Workbook()
ws = wb.active
percentage_cells = []
# Add the DataFrame data to the worksheet
for r_idx, r in enumerate(dataframe_to_rows(concatenated_df, index=False, header=True)):
ws.append(r)
for c_idx, value in enumerate(r):
if isinstance(value, str) and value.endswith('%'):
numeric_value = pd.to_numeric(value.strip('%'), errors='coerce') / 100
ws.cell(row=r_idx + 1, column=c_idx + 1, value=numeric_value)
percentage_cells.append((r_idx + 1, c_idx + 1))
tab = Table(displayName = "Table1",ref=ws.dimensions)
style = TableStyleInfo(
name="TableStyleMedium9",
showFirstColumn=False,
showLastColumn=False,
showRowStripes=True,
showColumnStripes=True
)
tab.tableStyleInfo = style
ws.add_table(tab)
# Ajuster la largeur des colonnes
for column_cells in ws.columns:
length = min(max(len(str(cell.value)) for cell in column_cells),30)
ws.column_dimensions[column_cells[0].column_letter].width = length + 2
for row, col in percentage_cells:
cell = ws.cell(row=row, column=col)
cell.number_format = numbers.BUILTIN_FORMATS[10]
wb.save(excel_path)
print(f'Saved {filename} as Excel file')
else:
print(f'No tables found in {filename}')
shutil.make_archive(base_name="./output", format='zip', root_dir="./outputs")
def reduce_and_convert(input_folder):
reduced_pdf_folder = "./reduced_pdf"
output_folder = './outputs'
reduce_pdf(input_folder,reduced_pdf_folder)
convert_to_excel(reduced_pdf_folder, output_folder)
def clear_gradio_temp(exclude_files):
temp_dir = tempfile.gettempdir()
for folder in os.listdir(temp_dir):
folder_path = os.path.join(temp_dir, folder)
if "gradio" in folder_path.lower():
should_skip = any(file_path.startswith(folder_path) for file_path in exclude_files)
if should_skip:
continue
try:
shutil.rmtree(folder_path)
print(f"Deleted: {folder_path}")
except Exception as e:
print(f"Failed to delete {folder_path}: {e}")
def ui(input_files):
clear_gradio_temp(input_files)
output_zip = "./output.zip"
if os.path.exists(output_zip):
os.remove(output_zip)
input_folder = "./input_folder"
if os.path.exists(input_folder):
shutil.rmtree(input_folder)
os.makedirs(input_folder)
# Move files into the extract_folder
for file_path in input_files:
print(file_path)
shutil.copy(file_path, input_folder)
reduce_and_convert(input_folder)
return output_zip
with gr.Blocks() as appli:
gr.Markdown("## CBCR PDF to Excel Conversion Tool")
input_files = gr.File(label="Select an input folder", file_count="directory")
process_button = gr.Button("Process Files")
download_link = gr.File(label="Processed Zip")
process_button.click(fn=ui, inputs=input_files, outputs=download_link)
appli.launch()
|