Spaces:
Runtime error
Runtime error
File size: 9,860 Bytes
e0b0a1c 06b19dd e0b0a1c 06b19dd e0b0a1c 06b19dd e0b0a1c 06b19dd e0b0a1c 06b19dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import re
import logging
import gradio as gr
from huggingface_hub import login
from typing import Set, List, Tuple
from huggingface_hub import InferenceClient
from langchain_openai import AzureChatOpenAI
from langchain.chains import LLMSummarizationCheckerChain
huggingface_key = os.getenv('HUGGINGFACE_KEY')
login(huggingface_key) # Huggingface api token
# Configure logging
logging.basicConfig(filename='factchecking.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
class FactChecking:
def __init__(self):
self.llm = AzureChatOpenAI(
azure_deployment = "ChatGPT"
)
self.client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def format_prompt(self, question: str) -> str:
"""
Formats the input question into a specific structure for text generation.
Args:
question (str): The user's question to be formatted.
Returns:
str: The formatted prompt including instructions and the question.
"""
# Combine the instruction template with the user's question
prompt = f"[INST] you are the ai assitant your task is answr for the user question[/INST]"
prompt1 = f"[INST] {question} [/INST]"
return prompt+prompt1
def mixtral_response(self,prompt, temperature=0.9, max_new_tokens=5000, top_p=0.95, repetition_penalty=1.0):
"""
Generates a response to the given prompt using text generation parameters.
Args:
prompt (str): The user's question.
temperature (float): Controls randomness in response generation.
max_new_tokens (int): The maximum number of tokens to generate.
top_p (float): Nucleus sampling parameter controlling diversity.
repetition_penalty (float): Penalty for repeating tokens.
Returns:
str: The generated response to the input prompt.
"""
# Adjust temperature and top_p values within acceptable ranges
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
# Simulating a call to a client's text generation API
formatted_prompt =self.format_prompt(prompt)
stream =self.client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
return output.replace("</s>","")
def extract_unique_sentences(self, text: str) -> Set[str]:
"""
Extracts unique sentences from the given text.
Args:
text (str): The input text.
Returns:
Set[str]: A set containing unique sentences.
"""
try:
# Tokenize the text into sentences using regex
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
logging.info("Sentence extraction completed successfully.")
# Return a list of sentences
return sentences
except Exception as e:
logging.error(f"Error occurred in extract_unique_sentences: {e}")
return set()
def find_different_sentences(self, text1: str, text2: str) -> List[Tuple[str, str]]:
"""
Finds sentences that are different between two texts.
Args:
text1 (str): The first text.
text2 (str): The second text.
Returns:
List[Tuple[str, str]]: A list of tuples containing sentences and their labels.
"""
try:
sentences_text1 = self.extract_unique_sentences(text1)
sentences_text2 = self.extract_unique_sentences(text2)
# Initialize labels list
labels = []
# Iterate over sentences in text1
for sentence in sentences_text1:
if sentence in sentences_text2:
# If sentence is common to both texts, assign 'factual' label
labels.append((sentence, 'factual'))
else:
# If sentence is unique to text1, assign 'hallucinated' label
labels.append((sentence, 'hallucinated'))
logging.info("Sentence comparison completed successfully.")
return labels
except Exception as e:
logging.error(f"Error occurred in find_different_sentences: {e}")
return []
def extract_words(self, text: str) -> List[str]:
"""
Extracts words from the input text.
Parameters:
text (str): The input text.
Returns:
List[str]: A list containing the extracted words.
"""
try:
# Tokenize the text into words and non-word characters (including spaces) using regex
chunks = re.findall(r'\b\w+\b|\W+', text)
logging.info("Words extracted successfully.")
except Exception as e:
logging.error(f"An error occurred while extracting words: {str(e)}")
return []
else:
return chunks
def label_words(self, text1: str, text2: str) -> List[Tuple[str, str]]:
"""
Labels words in text1 as 'factual' if they are present in text2, otherwise 'hallucinated'.
Parameters:
text1 (str): The first text.
text2 (str): The second text.
Returns:
List[Tuple[str, str]]: A list of tuples containing words from text1 and their labels.
"""
try:
# Extract chunks from both texts
chunks_text1 = self.extract_words(text1)
chunks_text2 = self.extract_words(text2)
# Convert chunks_text2 into a set for faster lookup
chunks_set_text2 = set(chunks_text2)
# Initialize labels list
labels = []
# Iterate over chunks in text1
for chunk in chunks_text1:
# Check if chunk is present in text2
if chunk in chunks_set_text2:
labels.append((chunk, 'factual'))
else:
labels.append((chunk, 'hallucinated'))
logging.info("Words labeled successfully.")
return labels
except Exception as e:
logging.error(f"An error occurred while labeling words: {str(e)}")
return []
def find_hallucinatted_sentence(self, question: str) -> Tuple[str, List[str]]:
"""
Finds hallucinated sentences in response to a given question.
Args:
question (str): The input question.
Returns:
Tuple[str, List[str]]: A tuple containing the original llama_result and a list of hallucinated sentences.
"""
try:
# Generate initial response using contract generator
mixtral_response = self.mixtral_response(question)
# Create checker chain for summarization checking
checker_chain = LLMSummarizationCheckerChain.from_llm(self.llm, verbose=True, max_checks=2)
# Run fact checking on the generated result
fact_checking_result = checker_chain.run(mixtral_response)
# Find different sentences between original result and fact checking result
prediction_list = self.find_different_sentences(mixtral_response, fact_checking_result)
#word prediction list
word_prediction_list = self.label_words(mixtral_response, fact_checking_result)
logging.info("Sentences comparison completed successfully.")
# Return the original result and list of hallucinated sentences
return mixtral_response,fact_checking_result,prediction_list,word_prediction_list
except Exception as e:
logging.error(f"Error occurred in find_hallucinatted_sentence: {e}")
return "", []
def interface(self):
css=""".gradio-container {background: rgb(157,228,255);
background: radial-gradient(circle, rgba(157,228,255,1) 0%, rgba(18,115,106,1) 100%);}"""
with gr.Blocks(css=css) as demo:
gr.HTML("""
<center><h1 style="color:#fff">Detect Hallucination</h1></center>""")
with gr.Row():
question = gr.Textbox(label="Question")
with gr.Row():
button = gr.Button(value="Submit")
with gr.Row():
with gr.Column(scale=0.50):
mixtral_response = gr.Textbox(label="llm answer")
with gr.Column(scale=0.50):
fact_checking_result = gr.Textbox(label="Corrected Result")
with gr.Row():
with gr.Column(scale=0.50):
highlighted_prediction = gr.HighlightedText(
label="Sentence Hallucination detection",
combine_adjacent=True,
color_map={"hallucinated": "red", "factual": "green"},
show_legend=True)
with gr.Column(scale=0.50):
word_highlighted_prediction = gr.HighlightedText(
label="Word Hallucination detection",
combine_adjacent=True,
color_map={"hallucinated": "red", "factual": "green"},
show_legend=True)
button.click(self.find_hallucinatted_sentence,question,[mixtral_response,fact_checking_result,highlighted_prediction,word_highlighted_prediction])
demo.launch(debug=True)
hallucination_detection = FactChecking()
hallucination_detection.interface() |