Update app.py
Browse files
app.py
CHANGED
|
@@ -118,16 +118,12 @@ def bi_encoder(bi_enc,passages):
|
|
| 118 |
|
| 119 |
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
|
| 120 |
bi_encoder = SentenceTransformer(bi_enc)
|
| 121 |
-
#Start the multi-process pool on all available CUDA devices
|
| 122 |
-
pool = bi_encoder.start_multi_process_pool()
|
| 123 |
|
| 124 |
#Compute the embeddings using the multi-process pool
|
| 125 |
print('encoding passages into a vector space...')
|
| 126 |
-
corpus_embeddings = bi_encoder.
|
| 127 |
-
print("Embeddings computed. Shape:", corpus_embeddings.shape)
|
| 128 |
|
| 129 |
-
|
| 130 |
-
bi_encoder.stop_multi_process_pool(pool)
|
| 131 |
|
| 132 |
return corpus_embeddings
|
| 133 |
|
|
|
|
| 118 |
|
| 119 |
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
|
| 120 |
bi_encoder = SentenceTransformer(bi_enc)
|
|
|
|
|
|
|
| 121 |
|
| 122 |
#Compute the embeddings using the multi-process pool
|
| 123 |
print('encoding passages into a vector space...')
|
| 124 |
+
corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True, show_progress_bar=True)
|
|
|
|
| 125 |
|
| 126 |
+
print("Embeddings computed. Shape:", corpus_embeddings.shape)
|
|
|
|
| 127 |
|
| 128 |
return corpus_embeddings
|
| 129 |
|