Spaces:
Sleeping
Sleeping
updated logic with more examples
Browse files
app.py
CHANGED
@@ -1,11 +1,389 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
2 |
|
3 |
-
st.
|
4 |
-
|
5 |
-
st.
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import time
|
3 |
+
from transformers import pipeline
|
4 |
+
from datasets import load_dataset, Audio
|
5 |
|
6 |
+
st.set_page_config(page_title="🤗 Transformers Library examples",layout="wide")
|
7 |
+
|
8 |
+
st.title('🤗 :rainbow[Transformers Library examples]')
|
9 |
+
|
10 |
+
# Done
|
11 |
+
# function for Sentiment Analysis or Text classification model
|
12 |
+
def sentiment_analysis():
|
13 |
+
code = '''
|
14 |
+
from transformers import pipeline
|
15 |
+
|
16 |
+
classifier = pipeline("sentiment-analysis")
|
17 |
+
results = classifier("Transformers library is very helpful.")
|
18 |
+
'''
|
19 |
+
st.code(code, language='python')
|
20 |
+
if st.button("Run Test ", type="primary"):
|
21 |
+
with st.spinner('Wait for it...'):
|
22 |
+
time.sleep(5)
|
23 |
+
classifier = pipeline("sentiment-analysis")
|
24 |
+
results = classifier("Transformers library is very helpful.")
|
25 |
+
|
26 |
+
|
27 |
+
st.write("Output:")
|
28 |
+
st.success(results)
|
29 |
+
st.divider()
|
30 |
+
|
31 |
+
st.subheader("Example: Multiple statements analysis")
|
32 |
+
with st.spinner('Wait for it...'):
|
33 |
+
time.sleep(5)
|
34 |
+
|
35 |
+
code = '''
|
36 |
+
from transformers import pipeline
|
37 |
+
|
38 |
+
classifier = pipeline("sentiment-analysis")
|
39 |
+
results = classifier([
|
40 |
+
"This is quick tutorial site.",
|
41 |
+
"I learnt new topics today.",
|
42 |
+
"I do not like lengthy tutorials."
|
43 |
+
])
|
44 |
+
'''
|
45 |
+
st.code(code, language='python')
|
46 |
+
|
47 |
+
results = classifier([
|
48 |
+
"This is quick tutorial site.",
|
49 |
+
"I learnt new topics today.",
|
50 |
+
"I do not like lengthy tutorials."
|
51 |
+
])
|
52 |
+
|
53 |
+
st.write("Output:")
|
54 |
+
st.success(results)
|
55 |
+
|
56 |
+
|
57 |
+
# function for Sentiment Analysis or Text classification model
|
58 |
+
def text_generation():
|
59 |
+
code = '''
|
60 |
+
from transformers import pipeline
|
61 |
+
|
62 |
+
classifier = pipeline("sentiment-analysis")
|
63 |
+
results = classifier("Transformers library is very helpful.")
|
64 |
+
'''
|
65 |
+
st.code(code, language='python')
|
66 |
+
if st.button("Run Test ", type="primary"):
|
67 |
+
with st.spinner('Wait for it...'):
|
68 |
+
time.sleep(5)
|
69 |
+
|
70 |
+
classifier = pipeline("sentiment-analysis")
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
# function for Sentiment Analysis or Text classification model
|
75 |
+
def summarization():
|
76 |
+
code = '''
|
77 |
+
from transformers import pipeline
|
78 |
+
|
79 |
+
classifier = pipeline("sentiment-analysis")
|
80 |
+
results = classifier("Transformers library is very helpful.")
|
81 |
+
'''
|
82 |
+
st.code(code, language='python')
|
83 |
+
if st.button("Run Test ", type="primary"):
|
84 |
+
with st.spinner('Wait for it...'):
|
85 |
+
time.sleep(5)
|
86 |
+
|
87 |
+
classifier = pipeline("sentiment-analysis")
|
88 |
+
|
89 |
+
# DONE
|
90 |
+
# function for Image Classification model
|
91 |
+
def image_classification():
|
92 |
+
code = '''
|
93 |
+
from transformers import pipeline
|
94 |
+
|
95 |
+
classifier = pipeline("sentiment-analysis")
|
96 |
+
results = classifier("Transformers library is very helpful.")
|
97 |
+
'''
|
98 |
+
st.code(code, language='python')
|
99 |
+
if st.button("Run Test ", type="primary"):
|
100 |
+
st.image("./data/dog.jpeg", width=250, use_column_width=100)
|
101 |
+
with st.spinner('Wait for it...'):
|
102 |
+
time.sleep(8)
|
103 |
+
vision_classifier = pipeline(model="google/vit-base-patch16-224")
|
104 |
+
preds = vision_classifier(images="./data/dog.jpeg")
|
105 |
+
st.success("Output:")
|
106 |
+
st.json(preds)
|
107 |
+
|
108 |
+
|
109 |
+
# function for Sentiment Analysis or Text classification model
|
110 |
+
def image_segmentation():
|
111 |
+
code = '''
|
112 |
+
from transformers import pipeline
|
113 |
+
|
114 |
+
classifier = pipeline("sentiment-analysis")
|
115 |
+
results = classifier("Transformers library is very helpful.")
|
116 |
+
'''
|
117 |
+
st.code(code, language='python')
|
118 |
+
if st.button("Run Test ", type="primary"):
|
119 |
+
with st.spinner('Wait for it...'):
|
120 |
+
time.sleep(5)
|
121 |
+
|
122 |
+
classifier = pipeline("sentiment-analysis")
|
123 |
+
|
124 |
+
|
125 |
+
# function for Sentiment Analysis or Text classification model
|
126 |
+
def object_detection():
|
127 |
+
code = '''
|
128 |
+
from transformers import pipeline
|
129 |
+
|
130 |
+
classifier = pipeline("sentiment-analysis")
|
131 |
+
results = classifier("Transformers library is very helpful.")
|
132 |
+
'''
|
133 |
+
st.code(code, language='python')
|
134 |
+
if st.button("Run Test ", type="primary"):
|
135 |
+
with st.spinner('Wait for it...'):
|
136 |
+
time.sleep(5)
|
137 |
+
|
138 |
+
classifier = pipeline("sentiment-analysis")
|
139 |
+
|
140 |
+
|
141 |
+
# function for Audio Classification model
|
142 |
+
def audio_classification():
|
143 |
+
code = '''
|
144 |
+
from transformers import pipeline
|
145 |
+
|
146 |
+
classifier = pipeline("sentiment-analysis")
|
147 |
+
results = classifier("Transformers library is very helpful.")
|
148 |
+
'''
|
149 |
+
st.code(code, language='python')
|
150 |
+
if st.button("Run Test ", type="primary"):
|
151 |
+
with st.spinner('Wait for it...'):
|
152 |
+
time.sleep(5)
|
153 |
+
|
154 |
+
classifier = pipeline("sentiment-analysis")
|
155 |
+
|
156 |
+
|
157 |
+
# function forAutomatic Speech Recognition model
|
158 |
+
def automatic_speech_recognition():
|
159 |
+
minds = load_dataset("PolyAI/minds14", name="en-US", split="train")
|
160 |
+
minds = minds.train_test_split(test_size=0.2)
|
161 |
+
st.write(minds)
|
162 |
+
minds = minds.remove_columns(["path", "transcription", "english_transcription", "lang_id"])
|
163 |
+
st.write("minds[train][0] " , minds["train"][0])
|
164 |
+
labels = minds["train"].features["intent_class"].names
|
165 |
+
st.write("labels " ,labels)
|
166 |
+
label2id, id2label = dict(), dict()
|
167 |
+
for i, label in enumerate(labels):
|
168 |
+
label2id[label] = str(i)
|
169 |
+
id2label[str(i)] = label
|
170 |
+
st.write("label2id - id2label" , label2id , id2label)
|
171 |
+
|
172 |
+
code = '''
|
173 |
+
from transformers import pipeline
|
174 |
+
|
175 |
+
classifier = pipeline("automatic-speech-recognition")
|
176 |
+
results = transcriber("./data/mlk.flac")
|
177 |
+
'''
|
178 |
+
st.code(code, language='python')
|
179 |
+
if st.button("Run Test ", type="primary"):
|
180 |
+
with st.spinner('Wait for it...'):
|
181 |
+
time.sleep(5)
|
182 |
+
transcriber = pipeline(task="automatic-speech-recognition")
|
183 |
+
results = transcriber("./data/audio.m4a")
|
184 |
+
st.write("Output:")
|
185 |
+
st.success(results)
|
186 |
+
|
187 |
+
|
188 |
+
# function for Image Captioningn model
|
189 |
+
def image_captioning():
|
190 |
+
code = '''
|
191 |
+
from transformers import pipeline
|
192 |
+
|
193 |
+
classifier = pipeline("sentiment-analysis")
|
194 |
+
results = classifier("Transformers library is very helpful.")
|
195 |
+
'''
|
196 |
+
st.code(code, language='python')
|
197 |
+
if st.button("Run Test ", type="primary"):
|
198 |
+
with st.spinner('Wait for it...'):
|
199 |
+
time.sleep(5)
|
200 |
+
|
201 |
+
classifier = pipeline("sentiment-analysis")
|
202 |
+
|
203 |
+
|
204 |
+
# function for Mask Filling model
|
205 |
+
def mask_filling():
|
206 |
+
code = '''
|
207 |
+
from transformers import pipeline
|
208 |
+
|
209 |
+
classifier = pipeline("sentiment-analysis")
|
210 |
+
results = classifier("Transformers library is very helpful.")
|
211 |
+
'''
|
212 |
+
st.code(code, language='python')
|
213 |
+
if st.button("Run Test ", type="primary"):
|
214 |
+
with st.spinner('Wait for it...'):
|
215 |
+
time.sleep(5)
|
216 |
+
|
217 |
+
classifier = pipeline("sentiment-analysis")
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
# function for Document Question Answering model
|
223 |
+
def document_question_answering():
|
224 |
+
code = '''
|
225 |
+
from transformers import pipeline
|
226 |
+
|
227 |
+
classifier = pipeline("sentiment-analysis")
|
228 |
+
results = classifier("Transformers library is very helpful.")
|
229 |
+
'''
|
230 |
+
st.code(code, language='python')
|
231 |
+
with st.spinner('Wait for it...'):
|
232 |
+
time.sleep(5)
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
|
238 |
+
# function for Named Entity Recognition model
|
239 |
+
def named_entity_recognition():
|
240 |
+
code = '''
|
241 |
+
from transformers import pipeline
|
242 |
+
|
243 |
+
classifier = pipeline("sentiment-analysis")
|
244 |
+
results = classifier("Transformers library is very helpful.")
|
245 |
+
'''
|
246 |
+
st.code(code, language='python')
|
247 |
+
if st.button("Run Test ", type="primary"):
|
248 |
+
with st.spinner('Wait for it...'):
|
249 |
+
time.sleep(5)
|
250 |
+
|
251 |
+
classifier = pipeline("sentiment-analysis")
|
252 |
+
|
253 |
+
|
254 |
+
# function for translation model
|
255 |
+
def translation():
|
256 |
+
code = '''
|
257 |
+
from transformers import pipeline
|
258 |
+
|
259 |
+
classifier = pipeline("sentiment-analysis")
|
260 |
+
results = classifier("Transformers library is very helpful.")
|
261 |
+
'''
|
262 |
+
st.code(code, language='python')
|
263 |
+
if st.button("Run Test ", type="primary"):
|
264 |
+
with st.spinner('Wait for it...'):
|
265 |
+
time.sleep(5)
|
266 |
+
classifier = pipeline("sentiment-analysis")
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
col1, col2 = st.columns(2)
|
272 |
+
'''
|
273 |
+
- `"audio-classification"`: will return a [`AudioClassificationPipeline`].
|
274 |
+
- `"automatic-speech-recognition"`: will return a [`AutomaticSpeechRecognitionPipeline`].
|
275 |
+
- `"conversational"`: will return a [`ConversationalPipeline`].
|
276 |
+
- `"depth-estimation"`: will return a [`DepthEstimationPipeline`].
|
277 |
+
- `"document-question-answering"`: will return a [`DocumentQuestionAnsweringPipeline`].
|
278 |
+
- `"feature-extraction"`: will return a [`FeatureExtractionPipeline`].
|
279 |
+
- `"fill-mask"`: will return a [`FillMaskPipeline`]:.
|
280 |
+
- `"image-classification"`: will return a [`ImageClassificationPipeline`].
|
281 |
+
- `"image-feature-extraction"`: will return an [`ImageFeatureExtractionPipeline`].
|
282 |
+
- `"image-segmentation"`: will return a [`ImageSegmentationPipeline`].
|
283 |
+
- `"image-to-image"`: will return a [`ImageToImagePipeline`].
|
284 |
+
- `"image-to-text"`: will return a [`ImageToTextPipeline`].
|
285 |
+
- `"mask-generation"`: will return a [`MaskGenerationPipeline`].
|
286 |
+
- `"object-detection"`: will return a [`ObjectDetectionPipeline`].
|
287 |
+
- `"question-answering"`: will return a [`QuestionAnsweringPipeline`].
|
288 |
+
- `"summarization"`: will return a [`SummarizationPipeline`].
|
289 |
+
- `"table-question-answering"`: will return a [`TableQuestionAnsweringPipeline`].
|
290 |
+
- `"text2text-generation"`: will return a [`Text2TextGenerationPipeline`].
|
291 |
+
- `"text-classification"` (alias `"sentiment-analysis"` available): will return a
|
292 |
+
[`TextClassificationPipeline`].
|
293 |
+
- `"text-generation"`: will return a [`TextGenerationPipeline`]:.
|
294 |
+
- `"text-to-audio"` (alias `"text-to-speech"` available): will return a [`TextToAudioPipeline`]:.
|
295 |
+
- `"token-classification"` (alias `"ner"` available): will return a [`TokenClassificationPipeline`].
|
296 |
+
- `"translation"`: will return a [`TranslationPipeline`].
|
297 |
+
- `"translation_xx_to_yy"`: will return a [`TranslationPipeline`].
|
298 |
+
- `"video-classification"`: will return a [`VideoClassificationPipeline`].
|
299 |
+
- `"visual-question-answering"`: will return a [`VisualQuestionAnsweringPipeline`].
|
300 |
+
- `"zero-shot-classification"`: will return a [`ZeroShotClassificationPipeline`].
|
301 |
+
- `"zero-shot-image-classification"`: will return a [`ZeroShotImageClassificationPipeline`].
|
302 |
+
- `"zero-shot-audio-classification"`: will return a [`ZeroShotAudioClassificationPipeline`].
|
303 |
+
- `"zero-shot-object-detection"`: will return a [`ZeroShotObjectDetectionPipeline`].
|
304 |
+
|
305 |
+
'''
|
306 |
+
|
307 |
+
|
308 |
+
with col1:
|
309 |
+
taskType = st.radio(
|
310 |
+
"Select a type of task to perform",
|
311 |
+
[
|
312 |
+
"Sentiment Analysis or Text classification",
|
313 |
+
"Text Generation",
|
314 |
+
"Summarization",
|
315 |
+
"Image Classification",
|
316 |
+
"Image Segmentation",
|
317 |
+
"Object Detection",
|
318 |
+
"Audio Classification",
|
319 |
+
"Automatic Speech Recognition",
|
320 |
+
"Visual Question Answering",
|
321 |
+
"Document Question Answering",
|
322 |
+
"Image Captioning",
|
323 |
+
|
324 |
+
"Mask Filling",
|
325 |
+
"Named Entity Recognition",
|
326 |
+
"Translation"
|
327 |
+
],
|
328 |
+
captions = [
|
329 |
+
"**pipeline(task=“sentiment-analysis”)**",
|
330 |
+
"pipeline(task=“text-generation”)",
|
331 |
+
"pipeline(task=“summarization”)",
|
332 |
+
"pipeline(task=“image-classification”)",
|
333 |
+
"pipeline(task=“image-segmentation”)",
|
334 |
+
"pipeline(task=“object-detection”)",
|
335 |
+
"pipeline(task=“audio-classification”)",
|
336 |
+
"pipeline(task=“automatic-speech-recognition”)",
|
337 |
+
"pipeline(task=“vqa”)",
|
338 |
+
"pipeline(task=“document-question-answering”)",
|
339 |
+
"pipeline(task=“image-to-text”)"
|
340 |
+
|
341 |
+
"Mask Filling",
|
342 |
+
"Named Entity Recognition",
|
343 |
+
"Translation"
|
344 |
+
], index=0)
|
345 |
+
|
346 |
+
|
347 |
+
with col2:
|
348 |
+
|
349 |
+
st.subheader(f"Example: {taskType}")
|
350 |
+
if taskType == "Sentiment Analysis or Text classification":
|
351 |
+
sentiment_analysis()
|
352 |
+
|
353 |
+
if taskType == "Text Generation":
|
354 |
+
text_generation()
|
355 |
+
|
356 |
+
if taskType == "Summarization":
|
357 |
+
summarization()
|
358 |
+
|
359 |
+
if taskType == "Image Classification":
|
360 |
+
image_classification()
|
361 |
+
|
362 |
+
if taskType == "Image Segmentation":
|
363 |
+
image_segmentation()
|
364 |
+
|
365 |
+
if taskType == "Object Detection":
|
366 |
+
object_detection()
|
367 |
+
|
368 |
+
if taskType == "Audio Classification":
|
369 |
+
audio_classification()
|
370 |
+
|
371 |
+
if taskType == "Automatic Speech Recognition":
|
372 |
+
automatic_speech_recognition()
|
373 |
+
|
374 |
+
if taskType == "Document Question Answering":
|
375 |
+
document_question_answering()
|
376 |
+
|
377 |
+
if taskType == "Image Captioning":
|
378 |
+
image_captioning()
|
379 |
+
|
380 |
+
if taskType == "Mask Filling":
|
381 |
+
mask_filling()
|
382 |
+
|
383 |
+
if taskType == "Named Entity Recognition":
|
384 |
+
named_entity_recognition()
|
385 |
+
|
386 |
+
if taskType == "Translation":
|
387 |
+
translation()
|
388 |
+
|
389 |
+
|