File size: 3,705 Bytes
6d6abcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
title: Alpha9 Miners Dashboard
emoji: π§
colorFrom: indigo
colorTo: purple
sdk: streamlit
sdk_version: 1.28.0
app_file: app.py
pinned: false
---
# Alpha9 Training Dashboard π§
Real-time monitoring dashboard for the Alpha9 Bittensor network, displaying training metrics and performance data from decentralized AI training operations.
You can find the dashboard here: [Hermit11/A9-Dashboard](https://huggingface.co/spaces/Hermit11/A9-Dashboard).
## Features
- Real-time training progress monitoring
- Historical analysis of training metrics
- Miner performance rankings and geographical distribution
- Network status overview
- Auto-refreshing metrics
## System Requirements
- Python 3.8+
- 2GB RAM minimum
- Internet connection for real-time updates
- Hugging Face account and API token
## Getting Started
### Prerequisites
1. Get a Hugging Face Account and Token:
- Create an account at [Hugging Face](https://huggingface.co/)
- Generate an access token from [Settings β Access Tokens](https://huggingface.co/settings/tokens)
- Make sure you have read access to the metrics repository
2. Clone the repository:
```bash
git clone https://github.com/bigideainc/A9Labs-Dashboard.git
cd A9Labs-Dashboard
```
3. Set up your Python environment:
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```
4. Install dependencies:
```bash
pip install -r requirements.txt
```
### Configuration
1. Create a `.env` file in the project root:
```bash
HF_TOKEN="your_hugging_face_token_here"
CENTRAL_REPO="Tobius/yogpt_test" # or your metrics repository
```
### Running Locally
1. Start the dashboard:
```bash
streamlit run app.py
```
2. Access the dashboard in your browser:
- The dashboard will automatically open at `http://localhost:8501`
- For remote access, use the network URL provided in the terminal
## Dashboard Sections
### Training Progress
- Overall progress bar showing completion percentage
- Total tokens processed
- Target token goal
### Training Metrics
- Loss curves
- Perplexity measurements
- Tokens per second performance
- Learning rate adaptation
### Network Overview
- Active miners leaderboard
- Geographical distribution map
- Real-time status indicators
## Development
### Project Structure
```
A9-Dashboard/
βββ app.py # Main dashboard application
βββ utils/
β βββ HFManager.py # Hugging Face integration utilities
βββ requirements.txt # Project dependencies
βββ .env # Environment configuration
```
### Contributing
1. Fork the repository
2. Create a feature branch
3. Commit your changes
4. Push to the branch
5. Create a Pull Request
## Accessing the Hosted Dashboard
The dashboard is hosted as a Hugging Face Space at [Hermit11/A9-Dashboard](https://huggingface.co/spaces/Hermit11/A9-Dashboard).
### Authentication
- No authentication required for viewing
- HF token required for deployment and modifications
## Troubleshooting
### Common Issues
1. "No Hugging Face token found":
- Ensure your `.env` file contains a valid `HF_TOKEN`
- Check token permissions on Hugging Face
2. "Cannot connect to metrics repository":
- Verify repository access permissions
- Check internet connection
- Confirm repository name in `.env`
### Support
- Create an issue in the GitHub repository
- Contact the development team through [GitHub Issues](https://github.com/bigideainc/A9Labs-Dashboard/issues)
## License
This project is licensed under the MIT License - see the LICENSE file for details. |