File size: 9,033 Bytes
6d6abcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import streamlit as st
import time
from datetime import datetime
import logging
from utils.HFManager import fetch_training_metrics_commits
import pandas as pd
import os
from dotenv import load_dotenv
import plotly.graph_objects as go
import pydeck as pdk

# Load environment variables
load_dotenv()

# Configure logging
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s - %(levelname)s - %(message)s')

# Page config
st.set_page_config(page_title="Alpha9 Miner Dashboard",
                   page_icon="🧠",
                   layout="wide",
                   menu_items={
                       'Get Help': 'https://github.com/Alpha9-Omega/YoGPT',
                       'Report a bug': "https://github.com/Alpha9-Omega/YoGPT/issues",
                       'About': "Dashboard for monitoring Alpha9 Bittensor and Commune miners"
                   })

# Custom CSS for progress bar and styling
st.markdown("""
    <style>
    .stProgress > div > div > div > div {
        background-image: linear-gradient(to right, #9146FF, #784CBD);
    }
    .metric-container {
        background-color: #262730;
        padding: 1rem;
        border-radius: 0.5rem;
    }
    .plot-container {
        background-color: #262730;
        border-radius: 0.5rem;
        padding: 1rem;
    }
    </style>
""", unsafe_allow_html=True)

class MetricsManager:
    def __init__(self, repo_name, token):
        if not repo_name:
            raise ValueError("Repository name is required")
        if not token:
            raise ValueError("Hugging Face token is required")

        self.repo_name = repo_name
        self.token = token
        self.last_update = None
        self.metrics_cache = []
        self.update_interval = 60  # seconds
        logging.info(f"MetricsManager initialized for repo: {repo_name}")

    def needs_update(self):
        if not self.last_update:
            return True
        return (datetime.now() - self.last_update).total_seconds() > self.update_interval

    def fetch_latest_metrics(self):
        if self.needs_update():
            logging.info("Fetching fresh metrics from HuggingFace...")
            try:
                self.metrics_cache = fetch_training_metrics_commits(self.repo_name, token=self.token)
                self.last_update = datetime.now()
                logging.info(f"Fetched {len(self.metrics_cache)} metrics entries")
            except Exception as e:
                logging.error(f"Error fetching metrics: {str(e)}")
                return []
        return self.metrics_cache

    def get_latest_job_metrics(self):
        metrics = self.fetch_latest_metrics()
        if not metrics:
            return None

        # Group metrics by job_id
        jobs = {}
        for entry in metrics:
            job_id = entry['metrics']['job_id']
            if job_id not in jobs:
                jobs[job_id] = []
            jobs[job_id].append(entry)

        # Get the latest job
        latest_job_id = max(jobs.keys())
        return jobs[latest_job_id]

    def get_historical_metrics(self):
        metrics = self.fetch_latest_metrics()
        if not metrics:
            return pd.DataFrame()

        records = []
        for entry in metrics:
            record = {
                'timestamp': entry['timestamp'],
                'miner_uid': entry['miner_uid'],
                'job_id': entry['metrics']['job_id'],
                'final_loss': entry['metrics'].get('final_loss', None),
                'perplexity': entry['metrics'].get('perplexity', None),
                'tokens_per_second': entry['metrics'].get('tokens_per_second', None),
                'inner_lr': entry['metrics'].get('inner_lr', None),
                'location': entry.get('location', 'Unknown'),
                'model_repo': entry['model_repo']
            }
            records.append(record)

        df = pd.DataFrame(records)
        try:
            df['timestamp'] = pd.to_datetime(df['timestamp'], format='%Y%m%d_%H%M%S')
        except ValueError:
            try:
                df['timestamp'] = pd.to_datetime(df['timestamp'], format='mixed')
            except:
                st.warning("Could not parse some timestamp values")

        return df.sort_values('timestamp')

# Get configuration
try:
    hf_token = st.secrets["HF_TOKEN"]
except:
    hf_token = os.getenv("HF_TOKEN")

try:
    central_repo = st.secrets["CENTRAL_REPO"]
except:
    central_repo = os.getenv("CENTRAL_REPO", "Tobius/yogpt_test")

if not hf_token:
    st.error("No Hugging Face token found. Please set HF_TOKEN in environment variables.")
    st.stop()

# Initialize metrics manager
if 'metrics_manager' not in st.session_state:
    st.session_state.metrics_manager = MetricsManager(central_repo, hf_token)

# Dashboard UI
st.title("🧠 Alpha9 Training Dashboard")

# Progress Bar Section
latest_metrics = st.session_state.metrics_manager.get_latest_job_metrics()
if latest_metrics:
    progress = 0.7158  # This should be calculated from actual data
    tokens_progress = "715,899,792,640/1T tokens"
    
    st.markdown("### Training Progress")
    st.progress(progress)
    col1, col2 = st.columns([1, 2])
    with col1:
        st.metric("Progress", f"{progress*100:.2f}%")
    with col2:
        st.metric("Tokens", tokens_progress)

# Metrics Grid
st.markdown("### Training Metrics")
metric_cols = st.columns(2)
with metric_cols[0]:
    # Loss Plot
    fig_loss = go.Figure()
    fig_loss.add_trace(go.Scatter(x=[1, 2, 3], y=[12, 3, 2], 
                                 mode='lines', 
                                 line=dict(color='#9146FF', width=2),
                                 name='Loss'))
    fig_loss.update_layout(
        title='Loss',
        xaxis_title='Steps',
        yaxis_title='Loss',
        yaxis_type="log",
        paper_bgcolor='rgba(0,0,0,0)',
        plot_bgcolor='rgba(0,0,0,0)',
        font=dict(color='white')
    )
    st.plotly_chart(fig_loss, use_container_width=True)

    # Tokens per Second Plot
    fig_tps = go.Figure()
    fig_tps.add_trace(go.Scatter(x=[1, 2, 3], y=[40000, 42000, 41000], 
                                mode='lines', 
                                line=dict(color='#9146FF', width=2),
                                name='Tokens/s'))
    fig_tps.update_layout(
        title='Tokens per Second',
        xaxis_title='Time',
        yaxis_title='Tokens/s',
        paper_bgcolor='rgba(0,0,0,0)',
        plot_bgcolor='rgba(0,0,0,0)',
        font=dict(color='white')
    )
    st.plotly_chart(fig_tps, use_container_width=True)

with metric_cols[1]:
    # Perplexity Plot
    fig_perp = go.Figure()
    fig_perp.add_trace(go.Scatter(x=[1, 2, 3], y=[200, 50, 20], 
                                 mode='lines', 
                                 line=dict(color='#9146FF', width=2),
                                 name='Perplexity'))
    fig_perp.update_layout(
        title='Perplexity',
        xaxis_title='Steps',
        yaxis_title='Perplexity',
        yaxis_type="log",
        paper_bgcolor='rgba(0,0,0,0)',
        plot_bgcolor='rgba(0,0,0,0)',
        font=dict(color='white')
    )
    st.plotly_chart(fig_perp, use_container_width=True)

    # Inner LR Plot
    fig_lr = go.Figure()
    fig_lr.add_trace(go.Scatter(x=[1, 2, 3], y=[0.0001, 0.0001, 0.0001], 
                               mode='lines', 
                               line=dict(color='#9146FF', width=2),
                               name='Inner LR'))
    fig_lr.update_layout(
        title='Inner Learning Rate',
        xaxis_title='Steps',
        yaxis_title='Learning Rate',
        paper_bgcolor='rgba(0,0,0,0)',
        plot_bgcolor='rgba(0,0,0,0)',
        font=dict(color='white')
    )
    st.plotly_chart(fig_lr, use_container_width=True)

# Leaderboard and Map
st.markdown("### Network Overview")
col1, col2 = st.columns([3, 2])

with col1:
    if latest_metrics:
        miner_df = pd.DataFrame([{
            'Miner UID': m['miner_uid'],
            'MH/s': round(m['metrics'].get('hashrate', 0) / 1e6, 2),
            'Location': m.get('location', 'Unknown'),
            'Status': 'Active'
        } for m in latest_metrics]).sort_values('MH/s', ascending=False)
        
        st.dataframe(miner_df, use_container_width=True)

with col2:
    # Sample map data
    map_data = pd.DataFrame({
        'lat': [32.7767, 40.7128, 51.5074],
        'lon': [-96.7970, -74.0060, -0.1278],
        'size': [10, 15, 20]
    })
    
    st.pydeck_chart(pdk.Deck(
        map_style='mapbox://styles/mapbox/dark-v10',
        initial_view_state=pdk.ViewState(
            latitude=20,
            longitude=0,
            zoom=1,
            pitch=0,
        ),
        layers=[
            pdk.Layer(
                'ScatterplotLayer',
                data=map_data,
                get_position='[lon, lat]',
                get_color='[145, 70, 255, 160]',
                get_radius='size',
                pickable=True
            ),
        ]
    ))

# Auto-refresh
time.sleep(5)
st.rerun()