File size: 15,565 Bytes
90cacdf
7ac8557
90cacdf
7ac8557
 
90cacdf
ff526b3
1e53a02
90cacdf
7ac8557
9a9a2c9
f3350b1
0e3a05d
80a1624
943f213
652f240
5945136
90cacdf
652f240
 
 
 
9eba2f5
652f240
 
 
 
 
 
 
 
 
 
 
 
9eba2f5
 
652f240
fb9ce8b
652f240
 
9eba2f5
 
 
 
e8eaf47
652f240
 
 
 
943f213
 
 
 
 
 
 
 
e8eaf47
943f213
 
 
 
 
 
 
 
652f240
e8eaf47
652f240
f13cb8e
fb9ce8b
 
 
9eba2f5
fb9ce8b
943f213
 
 
 
 
 
 
fb9ce8b
9eba2f5
fb9ce8b
943f213
 
 
 
 
 
 
 
 
 
 
 
 
 
652f240
 
943f213
652f240
943f213
 
 
 
 
 
 
652f240
 
 
 
 
9eba2f5
fb9ce8b
 
652f240
 
 
 
 
 
 
 
 
 
 
 
 
fb9ce8b
652f240
 
 
 
 
 
 
943f213
 
 
 
 
 
 
 
 
 
652f240
 
f13cb8e
652f240
90cacdf
7d6f241
90cacdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d6f241
ff526b3
 
1e53a02
ff526b3
 
f73ffe0
d2155c7
90cacdf
 
 
 
 
 
 
 
 
 
 
 
 
9a9a2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
d8d3e30
90cacdf
9a9a2c9
90cacdf
 
9a9a2c9
90cacdf
8125531
9a9a2c9
8125531
90cacdf
7d6f241
 
6448f47
106ab10
aecaaea
106ab10
aecaaea
90cacdf
ff526b3
b99be38
 
 
 
 
 
 
e8a69d9
 
 
b99be38
 
aecaaea
b99be38
 
 
 
 
 
aecaaea
f13cb8e
 
 
 
 
 
 
 
 
dbfea06
90cacdf
 
 
7d6f241
90cacdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e53a02
90cacdf
 
7d6f241
90cacdf
 
6448f47
90cacdf
 
 
1ff07dc
90cacdf
ff526b3
90cacdf
 
 
 
 
7d6f241
1dd1464
 
 
 
1e53a02
b676040
1dd1464
7d6f241
1dd1464
 
6448f47
1dd1464
1ff07dc
1dd1464
 
 
 
 
 
90cacdf
 
 
 
 
 
6448f47
ff526b3
 
90cacdf
 
 
 
 
 
7d6f241
9a9a2c9
7d6f241
5945136
9a9a2c9
7d6f241
 
7ac8557
7d6f241
7ac8557
7d6f241
 
9a9a2c9
7d6f241
 
7ac8557
7d6f241
9a9a2c9
7ac8557
 
f8fea2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3350b1
 
 
 
 
 
 
 
 
 
 
 
0e3a05d
 
 
f3350b1
 
 
 
 
 
 
 
7ac8557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d6f241
7ac8557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import torch
import torchmetrics
import pytorch_lightning as pl
from torch import Tensor, nn
from torchaudio.models import HDemucs
from audio_diffusion_pytorch import DiffusionModel
from auraloss.time import SISDRLoss
from auraloss.freq import MultiResolutionSTFTLoss
from umx.openunmix.model import OpenUnmix, Separator

from remfx.utils import FADLoss, spectrogram
from remfx.tcn import TCN
from remfx.utils import causal_crop
from remfx.callbacks import log_wandb_audio_batch
from einops import rearrange
from remfx import effects
import asteroid

ALL_EFFECTS = effects.Pedalboard_Effects


class RemFXChainInference(pl.LightningModule):
    def __init__(self, models, sample_rate, num_bins, effect_order):
        super().__init__()
        self.model = models
        self.mrstftloss = MultiResolutionSTFTLoss(
            n_bins=num_bins, sample_rate=sample_rate
        )
        self.l1loss = nn.L1Loss()
        self.metrics = nn.ModuleDict(
            {
                "SISDR": SISDRLoss(),
                "STFT": MultiResolutionSTFTLoss(),
            }
        )
        self.sample_rate = sample_rate
        self.effect_order = effect_order

    def forward(self, batch, batch_idx, order=None):
        x, y, _, rem_fx_labels = batch
        # Use chain of effects defined in config
        if order:
            effects_order = order
        else:
            effects_order = self.effect_order
        effects_present = [
            [ALL_EFFECTS[i] for i, effect in enumerate(effect_label) if effect == 1.0]
            for effect_label in rem_fx_labels
        ]
        output = []
        input_samples = rearrange(x, "b c t -> c (b t)").unsqueeze(0)
        target_samples = rearrange(y, "b c t -> c (b t)").unsqueeze(0)

        log_wandb_audio_batch(
            logger=self.logger,
            id="input_effected_audio",
            samples=input_samples.cpu(),
            sampling_rate=self.sample_rate,
            caption="Input Data",
        )
        log_wandb_audio_batch(
            logger=self.logger,
            id="target_audio",
            samples=target_samples.cpu(),
            sampling_rate=self.sample_rate,
            caption="Target Data",
        )
        with torch.no_grad():
            for i, (elem, effects_list) in enumerate(zip(x, effects_present)):
                elem = elem.unsqueeze(0)  # Add batch dim
                # Get the correct effect by search for names in effects_order
                effect_list_names = [effect.__name__ for effect in effects_list]
                effects = [
                    effect for effect in effects_order if effect in effect_list_names
                ]

                # log_wandb_audio_batch(
                #     logger=self.logger,
                #     id=f"{i}_Before",
                #     samples=elem.cpu(),
                #     sampling_rate=self.sample_rate,
                #     caption=effects,
                # )
                for effect in effects:
                    # Sample the model
                    elem = self.model[effect].model.sample(elem)
                #     log_wandb_audio_batch(
                #         logger=self.logger,
                #         id=f"{i}_{effect}",
                #         samples=elem.cpu(),
                #         sampling_rate=self.sample_rate,
                #         caption=effects,
                #     )
                # log_wandb_audio_batch(
                #     logger=self.logger,
                #     id=f"{i}_After",
                #     samples=elem.cpu(),
                #     sampling_rate=self.sample_rate,
                #     caption=effects,
                # )
                output.append(elem.squeeze(0))
        output = torch.stack(output)
        output_samples = rearrange(output, "b c t -> c (b t)").unsqueeze(0)

        log_wandb_audio_batch(
            logger=self.logger,
            id="output_audio",
            samples=output_samples.cpu(),
            sampling_rate=self.sample_rate,
            caption="Output Data",
        )
        loss = self.mrstftloss(output, y) + self.l1loss(output, y) * 100
        return loss, output

    def test_step(self, batch, batch_idx):
        x, y, _, _ = batch  # x, y = (B, C, T), (B, C, T)
        # Random order
        # random.shuffle(self.effect_order)
        loss, output = self.forward(batch, batch_idx, order=self.effect_order)
        # Crop target to match output
        if output.shape[-1] < y.shape[-1]:
            y = causal_crop(y, output.shape[-1])
        self.log("test_loss", loss)
        # Metric logging
        with torch.no_grad():
            for metric in self.metrics:
                # SISDR returns negative values, so negate them
                if metric == "SISDR":
                    negate = -1
                else:
                    negate = 1
                self.log(
                    f"test_{metric}",  # + "".join(self.effect_order).replace("RandomPedalboard", ""),
                    negate * self.metrics[metric](output, y),
                    on_step=False,
                    on_epoch=True,
                    logger=True,
                    prog_bar=True,
                    sync_dist=True,
                )
                self.log(
                    f"Input_{metric}",
                    negate * self.metrics[metric](x, y),
                    on_step=False,
                    on_epoch=True,
                    logger=True,
                    prog_bar=True,
                    sync_dist=True,
                )
        return loss

    def sample(self, batch):
        return self.forward(batch, 0)[1]


class RemFX(pl.LightningModule):
    def __init__(
        self,
        lr: float,
        lr_beta1: float,
        lr_beta2: float,
        lr_eps: float,
        lr_weight_decay: float,
        sample_rate: float,
        network: nn.Module,
    ):
        super().__init__()
        self.lr = lr
        self.lr_beta1 = lr_beta1
        self.lr_beta2 = lr_beta2
        self.lr_eps = lr_eps
        self.lr_weight_decay = lr_weight_decay
        self.sample_rate = sample_rate
        self.model = network
        self.metrics = nn.ModuleDict(
            {
                "SISDR": SISDRLoss(),
                "STFT": MultiResolutionSTFTLoss(),
            }
        )
        # Log first batch metrics input vs output only once
        self.log_train_audio = True

    @property
    def device(self):
        return next(self.model.parameters()).device

    def configure_optimizers(self):
        optimizer = torch.optim.AdamW(
            list(self.model.parameters()),
            lr=self.lr,
            betas=(self.lr_beta1, self.lr_beta2),
            eps=self.lr_eps,
            weight_decay=self.lr_weight_decay,
        )
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer,
            [0.8 * self.trainer.max_steps, 0.95 * self.trainer.max_steps],
            gamma=0.1,
        )
        return {
            "optimizer": optimizer,
            "lr_scheduler": {
                "scheduler": lr_scheduler,
                "monitor": "val_loss",
                "interval": "step",
                "frequency": 1,
            },
        }

    def training_step(self, batch, batch_idx):
        return self.common_step(batch, batch_idx, mode="train")

    def validation_step(self, batch, batch_idx):
        return self.common_step(batch, batch_idx, mode="valid")

    def test_step(self, batch, batch_idx):
        return self.common_step(batch, batch_idx, mode="test")

    def common_step(self, batch, batch_idx, mode: str = "train"):
        x, y, _, _ = batch  # x, y = (B, C, T), (B, C, T)

        loss, output = self.model((x, y))
        # Crop target to match output
        target = y
        if output.shape[-1] < y.shape[-1]:
            target = causal_crop(y, output.shape[-1])
        self.log(f"{mode}_loss", loss)
        # Metric logging
        with torch.no_grad():
            for metric in self.metrics:
                # SISDR returns negative values, so negate them
                if metric == "SISDR":
                    negate = -1
                else:
                    negate = 1
                # Only Log FAD on test set
                if metric == "FAD" and mode != "test":
                    continue
                self.log(
                    f"{mode}_{metric}",
                    negate * self.metrics[metric](output, target),
                    on_step=False,
                    on_epoch=True,
                    logger=True,
                    prog_bar=True,
                    sync_dist=True,
                )

                self.log(
                    f"Input_{metric}",
                    negate * self.metrics[metric](x, y),
                    on_step=False,
                    on_epoch=True,
                    logger=True,
                    prog_bar=True,
                    sync_dist=True,
                )

        return loss


class OpenUnmixModel(nn.Module):
    def __init__(
        self,
        n_fft: int = 2048,
        hop_length: int = 512,
        n_channels: int = 1,
        alpha: float = 0.3,
        sample_rate: int = 22050,
    ):
        super().__init__()
        self.n_channels = n_channels
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.alpha = alpha
        window = torch.hann_window(n_fft)
        self.register_buffer("window", window)

        self.num_bins = self.n_fft // 2 + 1
        self.sample_rate = sample_rate
        self.model = OpenUnmix(
            nb_channels=self.n_channels,
            nb_bins=self.num_bins,
        )
        self.separator = Separator(
            target_models={"other": self.model},
            nb_channels=self.n_channels,
            sample_rate=self.sample_rate,
            n_fft=self.n_fft,
            n_hop=self.hop_length,
        )
        self.mrstftloss = MultiResolutionSTFTLoss(
            n_bins=self.num_bins, sample_rate=self.sample_rate
        )
        self.l1loss = nn.L1Loss()

    def forward(self, batch):
        x, target = batch
        X = spectrogram(x, self.window, self.n_fft, self.hop_length, self.alpha)
        Y = self.model(X)
        sep_out = self.separator(x).squeeze(1)
        loss = self.mrstftloss(sep_out, target) + self.l1loss(sep_out, target) * 100

        return loss, sep_out

    def sample(self, x: Tensor) -> Tensor:
        return self.separator(x).squeeze(1)


class DemucsModel(nn.Module):
    def __init__(self, sample_rate, **kwargs) -> None:
        super().__init__()
        self.model = HDemucs(**kwargs)
        self.num_bins = kwargs["nfft"] // 2 + 1
        self.mrstftloss = MultiResolutionSTFTLoss(
            n_bins=self.num_bins, sample_rate=sample_rate
        )
        self.l1loss = nn.L1Loss()

    def forward(self, batch):
        x, target = batch
        output = self.model(x).squeeze(1)
        loss = self.mrstftloss(output, target) + self.l1loss(output, target) * 100
        return loss, output

    def sample(self, x: Tensor) -> Tensor:
        return self.model(x).squeeze(1)


class DiffusionGenerationModel(nn.Module):
    def __init__(self, n_channels: int = 1):
        super().__init__()
        self.model = DiffusionModel(in_channels=n_channels)

    def forward(self, batch):
        x, target = batch
        sampled_out = self.model.sample(x)
        return self.model(x), sampled_out

    def sample(self, x: Tensor, num_steps: int = 10) -> Tensor:
        noise = torch.randn(x.shape).to(x)
        return self.model.sample(noise, num_steps=num_steps)


class DPTNetModel(nn.Module):
    def __init__(self, sample_rate, num_bins, **kwargs):
        super().__init__()
        self.model = asteroid.models.dptnet.DPTNet(**kwargs)
        self.num_bins = num_bins
        self.mrstftloss = MultiResolutionSTFTLoss(
            n_bins=self.num_bins, sample_rate=sample_rate
        )
        self.l1loss = nn.L1Loss()

    def forward(self, batch):
        x, target = batch
        output = self.model(x.squeeze(1))
        loss = self.mrstftloss(output, target) + self.l1loss(output, target) * 100
        return loss, output

    def sample(self, x: Tensor) -> Tensor:
        return self.model(x.squeeze(1))


class DCUNetModel(nn.Module):
    def __init__(self, sample_rate, num_bins, **kwargs):
        super().__init__()
        self.model = asteroid.models.DCUNet(**kwargs)
        self.mrstftloss = MultiResolutionSTFTLoss(
            n_bins=num_bins, sample_rate=sample_rate
        )
        self.l1loss = nn.L1Loss()

    def forward(self, batch):
        x, target = batch
        output = self.model(x.squeeze(1))  # B x T
        # Crop target to match output
        if output.shape[-1] < target.shape[-1]:
            target = causal_crop(target, output.shape[-1])
        loss = self.mrstftloss(output, target) + self.l1loss(output, target) * 100
        return loss, output

    def sample(self, x: Tensor) -> Tensor:
        output = self.model(x.squeeze(1))  # B x T
        return output


class TCNModel(nn.Module):
    def __init__(self, sample_rate, num_bins, **kwargs):
        super().__init__()
        self.model = TCN(**kwargs)
        self.mrstftloss = MultiResolutionSTFTLoss(
            n_bins=num_bins, sample_rate=sample_rate
        )
        self.l1loss = nn.L1Loss()

    def forward(self, batch):
        x, target = batch
        output = self.model(x)  # B x 1 x T
        # Crop target to match output
        if output.shape[-1] < target.shape[-1]:
            target = causal_crop(target, output.shape[-1])
        loss = self.mrstftloss(output, target) + self.l1loss(output, target) * 100
        return loss, output

    def sample(self, x: Tensor) -> Tensor:
        output = self.model(x)  # B x 1 x T
        return output


class FXClassifier(pl.LightningModule):
    def __init__(
        self,
        lr: float,
        lr_weight_decay: float,
        sample_rate: float,
        network: nn.Module,
    ):
        super().__init__()
        self.lr = lr
        self.lr_weight_decay = lr_weight_decay
        self.sample_rate = sample_rate
        self.network = network

    def forward(self, x: torch.Tensor):
        return self.network(x)

    def common_step(self, batch, batch_idx, mode: str = "train"):
        x, y, dry_label, wet_label = batch
        pred_label = self.network(x)
        loss = nn.functional.cross_entropy(pred_label, dry_label)
        self.log(
            f"{mode}_loss",
            loss,
            on_step=True,
            on_epoch=True,
            prog_bar=True,
            logger=True,
            sync_dist=True,
        )

        self.log(
            f"{mode}_mAP",
            torchmetrics.functional.retrieval_average_precision(
                pred_label, dry_label.long()
            ),
            on_step=True,
            on_epoch=True,
            prog_bar=True,
            logger=True,
            sync_dist=True,
        )

        return loss

    def training_step(self, batch, batch_idx):
        return self.common_step(batch, batch_idx, mode="train")

    def validation_step(self, batch, batch_idx):
        return self.common_step(batch, batch_idx, mode="valid")

    def test_step(self, batch, batch_idx):
        return self.common_step(batch, batch_idx, mode="test")

    def configure_optimizers(self):
        optimizer = torch.optim.AdamW(
            self.network.parameters(),
            lr=self.lr,
            weight_decay=self.lr_weight_decay,
        )
        return optimizer