File size: 5,369 Bytes
7d6db8f
8125531
14ae0ea
 
 
a89496d
8125531
d9f47ef
7173e65
8125531
14ae0ea
e0a5f6f
14ae0ea
b175ee9
e0a5f6f
 
 
 
 
 
 
7173e65
6990e4a
e0a5f6f
 
 
 
 
 
6990e4a
e0a5f6f
 
 
 
 
 
 
7173e65
e0a5f6f
6990e4a
e0a5f6f
7173e65
 
 
 
8125531
 
 
7173e65
 
 
 
 
 
 
 
 
 
 
 
 
8125531
7173e65
 
 
 
8125531
7173e65
 
e0a5f6f
8125531
7173e65
 
 
 
 
 
 
8125531
7173e65
e0a5f6f
8125531
7bb4fe3
7173e65
 
 
 
 
 
 
 
 
8125531
 
 
7173e65
 
8125531
e0a5f6f
 
 
 
 
 
 
8125531
e0a5f6f
 
 
 
 
 
 
 
 
8125531
e0a5f6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8125531
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
from torch.utils.data import Dataset, DataLoader
import torchaudio
import torch.nn.functional as F
from pathlib import Path
import pytorch_lightning as pl
from typing import Any, List
from remfx import effects
from tqdm import tqdm
from remfx.utils import create_sequential_chunks

# https://zenodo.org/record/1193957 -> VocalSet


class VocalSet(Dataset):
    def __init__(
        self,
        root: str,
        sample_rate: int,
        chunk_size_in_sec: int = 3,
        effect_types: List[torch.nn.Module] = None,
        render_files: bool = True,
        render_root: str = None,
        mode: str = "train",
    ):
        super().__init__()
        self.chunks = []
        self.song_idx = []
        self.root = Path(root)
        self.render_root = Path(render_root)
        self.chunk_size_in_sec = chunk_size_in_sec
        self.sample_rate = sample_rate
        self.mode = mode

        mode_path = self.root / self.mode
        self.files = sorted(list(mode_path.glob("./**/*.wav")))
        self.normalize = effects.LoudnessNormalize(sample_rate, target_lufs_db=-20)
        self.effect_types = effect_types

        self.processed_root = self.render_root / "processed" / self.mode

        self.num_chunks = 0
        print("Total files:", len(self.files))
        print("Processing files...")
        if render_files:
            # Split audio file into chunks, resample, then apply random effects
            self.processed_root.mkdir(parents=True, exist_ok=True)
            for audio_file in tqdm(self.files, total=len(self.files)):
                chunks, orig_sr = create_sequential_chunks(
                    audio_file, self.chunk_size_in_sec
                )
                for chunk in chunks:
                    resampled_chunk = torchaudio.functional.resample(
                        chunk, orig_sr, sample_rate
                    )
                    chunk_size_in_samples = self.chunk_size_in_sec * self.sample_rate
                    if resampled_chunk.shape[-1] < chunk_size_in_samples:
                        resampled_chunk = F.pad(
                            resampled_chunk,
                            (0, chunk_size_in_samples - resampled_chunk.shape[1]),
                        )
                    # Apply effect
                    effect_idx = torch.rand(1).item() * len(self.effect_types.keys())
                    effect_name = list(self.effect_types.keys())[int(effect_idx)]
                    effect = self.effect_types[effect_name]
                    effected_input = effect(resampled_chunk)
                    # Normalize
                    normalized_input = self.normalize(effected_input)
                    normalized_target = self.normalize(resampled_chunk)

                    output_dir = self.processed_root / str(self.num_chunks)
                    output_dir.mkdir(exist_ok=True)
                    torchaudio.save(
                        output_dir / "input.wav", normalized_input, self.sample_rate
                    )
                    torchaudio.save(
                        output_dir / "target.wav", normalized_target, self.sample_rate
                    )
                    torch.save(effect_name, output_dir / "effect_name.pt")
                    self.num_chunks += 1
        else:
            self.num_chunks = len(list(self.processed_root.iterdir()))

        print(
            f"Found {len(self.files)} {self.mode} files .\n"
            f"Total chunks: {self.num_chunks}"
        )

    def __len__(self):
        return self.num_chunks

    def __getitem__(self, idx):
        input_file = self.processed_root / str(idx) / "input.wav"
        target_file = self.processed_root / str(idx) / "target.wav"
        effect_name = torch.load(self.processed_root / str(idx) / "effect_name.pt")
        input, sr = torchaudio.load(input_file)
        target, sr = torchaudio.load(target_file)
        return (input, target, effect_name)


class VocalSetDatamodule(pl.LightningDataModule):
    def __init__(
        self,
        train_dataset,
        val_dataset,
        test_dataset,
        *,
        batch_size: int,
        num_workers: int,
        pin_memory: bool = False,
        **kwargs: int,
    ) -> None:
        super().__init__()
        self.train_dataset = train_dataset
        self.val_dataset = val_dataset
        self.test_dataset = test_dataset
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.pin_memory = pin_memory

    def setup(self, stage: Any = None) -> None:
        pass

    def train_dataloader(self) -> DataLoader:
        return DataLoader(
            dataset=self.train_dataset,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
            shuffle=True,
        )

    def val_dataloader(self) -> DataLoader:
        return DataLoader(
            dataset=self.val_dataset,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
            shuffle=False,
        )

    def test_dataloader(self) -> DataLoader:
        return DataLoader(
            dataset=self.test_dataset,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
            shuffle=False,
        )