Spaces:
Sleeping
Sleeping
File size: 7,733 Bytes
90cacdf ff526b3 90cacdf 1dd1464 90cacdf ff526b3 f73ffe0 90cacdf ff526b3 90cacdf ff526b3 90cacdf ff526b3 fb92c76 ff526b3 fb92c76 ff526b3 78820af ff526b3 90cacdf dfbeb31 f73ffe0 90cacdf 78820af ff526b3 b175ee9 90cacdf 78820af ff526b3 90cacdf 78820af 90cacdf ff526b3 90cacdf ff526b3 90cacdf 1dd1464 90cacdf ff526b3 90cacdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import torch
from torch import Tensor, nn
import pytorch_lightning as pl
from einops import rearrange
import wandb
from audio_diffusion_pytorch import DiffusionModel
from auraloss.time import SISDRLoss
from auraloss.freq import MultiResolutionSTFTLoss, STFTLoss
from torch.nn import L1Loss
from umx.openunmix.model import OpenUnmix, Separator
from torchaudio.models import HDemucs
class RemFXModel(pl.LightningModule):
def __init__(
self,
lr: float,
lr_beta1: float,
lr_beta2: float,
lr_eps: float,
lr_weight_decay: float,
sample_rate: float,
network: nn.Module,
):
super().__init__()
self.lr = lr
self.lr_beta1 = lr_beta1
self.lr_beta2 = lr_beta2
self.lr_eps = lr_eps
self.lr_weight_decay = lr_weight_decay
self.sample_rate = sample_rate
self.model = network
self.metrics = torch.nn.ModuleDict(
{
"SISDR": SISDRLoss(),
"STFT": STFTLoss(),
"L1": L1Loss(),
}
)
# Log first batch metrics input vs output only once
self.log_first = True
@property
def device(self):
return next(self.model.parameters()).device
def configure_optimizers(self):
optimizer = torch.optim.AdamW(
list(self.model.parameters()),
lr=self.lr,
betas=(self.lr_beta1, self.lr_beta2),
eps=self.lr_eps,
weight_decay=self.lr_weight_decay,
)
return optimizer
def training_step(self, batch, batch_idx):
loss = self.common_step(batch, batch_idx, mode="train")
return loss
def validation_step(self, batch, batch_idx):
loss = self.common_step(batch, batch_idx, mode="valid")
return loss
def common_step(self, batch, batch_idx, mode: str = "train"):
loss, output = self.model(batch)
self.log(f"{mode}_loss", loss)
x, y, label = batch
# Metric logging
for metric in self.metrics:
# SISDR returns negative values, so negate them
if metric == "SISDR":
negate = -1
else:
negate = 1
self.log(
f"{mode}_{metric}",
negate * self.metrics[metric](output, y),
on_step=False,
on_epoch=True,
logger=True,
prog_bar=True,
sync_dist=True,
)
return loss
def on_train_batch_start(self, batch, batch_idx):
if self.log_first:
x, target, label = batch
for metric in self.metrics:
# SISDR returns negative values, so negate them
if metric == "SISDR":
negate = -1
else:
negate = 1
self.log(
f"Input_{metric}",
negate * self.metrics[metric](x, target),
on_step=False,
on_epoch=True,
logger=True,
prog_bar=True,
sync_dist=True,
)
self.log_first = False
def on_validation_epoch_start(self):
self.log_next = True
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx):
if self.log_next:
x, target, label = batch
self.model.eval()
with torch.no_grad():
y = self.model.sample(x)
# Concat samples together for easier viewing in dashboard
# 2 seconds of silence between each sample
silence = torch.zeros_like(x)
silence = silence[:, : self.sample_rate * 2]
concat_samples = torch.cat([y, silence, x, silence, target], dim=-1)
log_wandb_audio_batch(
logger=self.logger,
id="prediction_input_target",
samples=concat_samples.cpu(),
sampling_rate=self.sample_rate,
caption=f"Epoch {self.current_epoch}",
)
self.log_next = False
self.model.train()
class OpenUnmixModel(torch.nn.Module):
def __init__(
self,
n_fft: int = 2048,
hop_length: int = 512,
n_channels: int = 1,
alpha: float = 0.3,
sample_rate: int = 22050,
):
super().__init__()
self.n_channels = n_channels
self.n_fft = n_fft
self.hop_length = hop_length
self.alpha = alpha
window = torch.hann_window(n_fft)
self.register_buffer("window", window)
self.num_bins = self.n_fft // 2 + 1
self.sample_rate = sample_rate
self.model = OpenUnmix(
nb_channels=self.n_channels,
nb_bins=self.num_bins,
)
self.separator = Separator(
target_models={"other": self.model},
nb_channels=self.n_channels,
sample_rate=self.sample_rate,
n_fft=self.n_fft,
n_hop=self.hop_length,
)
self.loss_fn = MultiResolutionSTFTLoss(
n_bins=self.num_bins, sample_rate=self.sample_rate
)
def forward(self, batch):
x, target, label = batch
X = spectrogram(x, self.window, self.n_fft, self.hop_length, self.alpha)
Y = self.model(X)
sep_out = self.separator(x).squeeze(1)
loss = self.loss_fn(sep_out, target)
return loss, sep_out
def sample(self, x: Tensor) -> Tensor:
return self.separator(x).squeeze(1)
class DemucsModel(torch.nn.Module):
def __init__(self, sample_rate, **kwargs) -> None:
super().__init__()
self.model = HDemucs(**kwargs)
self.num_bins = kwargs["nfft"] // 2 + 1
self.loss_fn = MultiResolutionSTFTLoss(
n_bins=self.num_bins, sample_rate=sample_rate
)
def forward(self, batch):
x, target, label = batch
output = self.model(x).squeeze(1)
loss = self.loss_fn(output, target)
return loss, output
def sample(self, x: Tensor) -> Tensor:
return self.model(x).squeeze(1)
class DiffusionGenerationModel(nn.Module):
def __init__(self, n_channels: int = 1):
super().__init__()
self.model = DiffusionModel(in_channels=n_channels)
def forward(self, batch):
x, target, label = batch
sampled_out = self.model.sample(x)
return self.model(x), sampled_out
def sample(self, x: Tensor, num_steps: int = 10) -> Tensor:
noise = torch.randn(x.shape).to(x)
return self.model.sample(noise, num_steps=num_steps)
def log_wandb_audio_batch(
logger: pl.loggers.WandbLogger,
id: str,
samples: Tensor,
sampling_rate: int,
caption: str = "",
):
num_items = samples.shape[0]
samples = rearrange(samples, "b c t -> b t c")
for idx in range(num_items):
logger.experiment.log(
{
f"{id}_{idx}": wandb.Audio(
samples[idx].cpu().numpy(),
caption=caption,
sample_rate=sampling_rate,
)
}
)
def spectrogram(
x: torch.Tensor,
window: torch.Tensor,
n_fft: int,
hop_length: int,
alpha: float,
) -> torch.Tensor:
bs, chs, samp = x.size()
x = x.view(bs * chs, -1) # move channels onto batch dim
X = torch.stft(
x,
n_fft=n_fft,
hop_length=hop_length,
window=window,
return_complex=True,
)
# move channels back
X = X.view(bs, chs, X.shape[-2], X.shape[-1])
return torch.pow(X.abs() + 1e-8, alpha)
|