Spaces:
Sleeping
Sleeping
File size: 7,836 Bytes
7d6db8f a89496d 14ae0ea a89496d 7d6db8f 14ae0ea b175ee9 14ae0ea 7d6db8f a89496d 14ae0ea b175ee9 14ae0ea 7d6db8f 14ae0ea c7f4805 14ae0ea 7d6db8f b175ee9 a89496d 14ae0ea c7f4805 a89496d 14ae0ea 7d6db8f abb9ffa 7d6db8f b175ee9 c7f4805 7d6db8f 9072475 c7f4805 14ae0ea 7d6db8f 14ae0ea b175ee9 14ae0ea 7d6db8f 14ae0ea 7d6db8f c7f4805 7d6db8f c7f4805 14ae0ea b175ee9 14ae0ea a89496d b175ee9 7d6db8f b175ee9 9072475 b175ee9 7d6db8f 78820af 7d6db8f 9072475 b175ee9 7d6db8f b175ee9 9072475 b175ee9 9072475 b175ee9 9072475 a89496d b175ee9 a89496d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import torch
from torch.utils.data import Dataset, DataLoader, random_split
import torchaudio
import torchaudio.transforms as T
import torch.nn.functional as F
from pathlib import Path
import pytorch_lightning as pl
from typing import Any, List, Tuple
# https://zenodo.org/record/7044411/ -> GuitarFX
# https://zenodo.org/record/3371780 -> GuitarSet
class GuitarFXDataset(Dataset):
def __init__(
self,
root: str,
sample_rate: int,
chunk_size_in_sec: int = 3,
effect_types: List[str] = None,
):
super().__init__()
self.wet_files = []
self.dry_files = []
self.chunks = []
self.labels = []
self.song_idx = []
self.root = Path(root)
self.chunk_size_in_sec = chunk_size_in_sec
self.sample_rate = sample_rate
if effect_types is None:
effect_types = [
d.name for d in self.root.iterdir() if d.is_dir() and d != "Clean"
]
current_file = 0
for i, effect in enumerate(effect_types):
for pickup in Path(self.root / effect).iterdir():
wet_files = sorted(list(pickup.glob("*.wav")))
dry_files = sorted(
list(self.root.glob(f"Clean/{pickup.name}/**/*.wav"))
)
self.wet_files += wet_files
self.dry_files += dry_files
self.labels += [i] * len(wet_files)
for audio_file in wet_files:
chunk_starts, orig_sr = create_sequential_chunks(
audio_file, self.chunk_size_in_sec
)
self.chunks += chunk_starts
self.song_idx += [current_file] * len(chunk_starts)
current_file += 1
print(
f"Found {len(self.wet_files)} wet files and {len(self.dry_files)} dry files.\n"
f"Total chunks: {len(self.chunks)}"
)
self.resampler = T.Resample(orig_sr, sample_rate)
def __len__(self):
return len(self.chunks)
def __getitem__(self, idx):
# Load effected and "clean" audio
song_idx = self.song_idx[idx]
x, sr = torchaudio.load(self.wet_files[song_idx])
y, sr = torchaudio.load(self.dry_files[song_idx])
effect_label = self.labels[song_idx] # Effect label
chunk_start = self.chunks[idx]
chunk_size_in_samples = self.chunk_size_in_sec * sr
x = x[:, chunk_start : chunk_start + chunk_size_in_samples]
y = y[:, chunk_start : chunk_start + chunk_size_in_samples]
resampled_x = self.resampler(x)
resampled_y = self.resampler(y)
# Reset chunk size to be new sample rate
chunk_size_in_samples = self.chunk_size_in_sec * self.sample_rate
# Pad to chunk_size if needed
if resampled_x.shape[-1] < chunk_size_in_samples:
resampled_x = F.pad(
resampled_x, (0, chunk_size_in_samples - resampled_x.shape[1])
)
if resampled_y.shape[-1] < chunk_size_in_samples:
resampled_y = F.pad(
resampled_y, (0, chunk_size_in_samples - resampled_y.shape[1])
)
return (resampled_x, resampled_y, effect_label)
class GuitarSet(Dataset):
def __init__(
self,
root: str,
sample_rate: int,
chunk_size_in_sec: int = 3,
effect_types: List[torch.nn.Module] = None,
):
super().__init__()
self.chunks = []
self.song_idx = []
self.root = Path(root)
self.chunk_size_in_sec = chunk_size_in_sec
self.files = sorted(list(self.root.glob("./**/*.wav")))
self.sample_rate = sample_rate
for i, audio_file in enumerate(self.files):
chunk_starts, orig_sr = create_sequential_chunks(
audio_file, self.chunk_size_in_sec
)
self.chunks += chunk_starts
self.song_idx += [i] * len(chunk_starts)
print(f"Found {len(self.files)} files .\n" f"Total chunks: {len(self.chunks)}")
self.resampler = T.Resample(orig_sr, sample_rate)
self.effect_types = effect_types
def __len__(self):
return len(self.chunks)
def __getitem__(self, idx):
# Load and effect audio
song_idx = self.song_idx[idx]
x, sr = torchaudio.load(self.files[song_idx])
chunk_start = self.chunks[idx]
chunk_size_in_samples = self.chunk_size_in_sec * sr
x = x[:, chunk_start : chunk_start + chunk_size_in_samples]
resampled_x = self.resampler(x)
# Reset chunk size to be new sample rate
chunk_size_in_samples = self.chunk_size_in_sec * self.sample_rate
# Pad to chunk_size if needed
if resampled_x.shape[-1] < chunk_size_in_samples:
resampled_x = F.pad(
resampled_x, (0, chunk_size_in_samples - resampled_x.shape[1])
)
target = resampled_x
# Add random effect
random_effect_idx = torch.rand(1).item() * len(self.effect_types.keys())
effect_name = list(self.effect_types.keys())[int(random_effect_idx)]
effect = self.effect_types[effect_name]
effected_input = effect(resampled_x)
return (effected_input, target, effect_name)
def create_random_chunks(
audio_file: str, chunk_size: int, num_chunks: int
) -> Tuple[List[Tuple[int, int]], int]:
"""Create num_chunks random chunks of size chunk_size (seconds)
from an audio file.
Return sample_index of start of each chunk and original sr
"""
audio, sr = torchaudio.load(audio_file)
chunk_size_in_samples = chunk_size * sr
if chunk_size_in_samples >= audio.shape[-1]:
chunk_size_in_samples = audio.shape[-1] - 1
chunks = []
for i in range(num_chunks):
start = torch.randint(0, audio.shape[-1] - chunk_size_in_samples, (1,)).item()
chunks.append(start)
return chunks, sr
def create_sequential_chunks(
audio_file: str, chunk_size: int
) -> Tuple[List[Tuple[int, int]], int]:
"""Create sequential chunks of size chunk_size (seconds) from an audio file.
Return sample_index of start of each chunk and original sr
"""
audio, sr = torchaudio.load(audio_file)
chunk_size_in_samples = chunk_size * sr
chunk_starts = torch.arange(0, audio.shape[-1], chunk_size_in_samples)
return chunk_starts, sr
class Datamodule(pl.LightningDataModule):
def __init__(
self,
dataset,
*,
val_split: float,
batch_size: int,
num_workers: int,
pin_memory: bool = False,
**kwargs: int,
) -> None:
super().__init__()
self.dataset = dataset
self.val_split = val_split
self.batch_size = batch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
self.data_train: Any = None
self.data_val: Any = None
def setup(self, stage: Any = None) -> None:
split = [1.0 - self.val_split, self.val_split]
train_size = round(split[0] * len(self.dataset))
val_size = round(split[1] * len(self.dataset))
self.data_train, self.data_val = random_split(
self.dataset, [train_size, val_size]
)
def train_dataloader(self) -> DataLoader:
return DataLoader(
dataset=self.data_train,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=True,
)
def val_dataloader(self) -> DataLoader:
return DataLoader(
dataset=self.data_val,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=False,
)
|