File size: 15,409 Bytes
7d6f241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a9a2c9
7d6f241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.container import ModuleList
from torch.nn.modules.activation import MultiheadAttention
from torch.nn.modules.dropout import Dropout
from torch.nn.modules.linear import Linear
from torch.nn.modules.rnn import LSTM
from torch.nn.modules.normalization import LayerNorm
from torch.autograd import Variable
import copy
import math


# adapted from https://github.com/ujscjj/DPTNet


class DPTNet_base(nn.Module):
    def __init__(
        self,
        enc_dim,
        feature_dim,
        hidden_dim,
        layer,
        segment_size=250,
        nspk=2,
        win_len=2,
    ):
        super().__init__()
        # parameters
        self.window = win_len
        self.stride = self.window // 2

        self.enc_dim = enc_dim
        self.feature_dim = feature_dim
        self.hidden_dim = hidden_dim
        self.segment_size = segment_size

        self.layer = layer
        self.num_spk = nspk
        self.eps = 1e-8

        self.dpt_encoder = DPTEncoder(
            n_filters=enc_dim,
            window_size=win_len,
        )
        self.enc_LN = nn.GroupNorm(1, self.enc_dim, eps=1e-8)
        self.dpt_separation = DPTSeparation(
            self.enc_dim,
            self.feature_dim,
            self.hidden_dim,
            self.num_spk,
            self.layer,
            self.segment_size,
        )

        self.mask_conv1x1 = nn.Conv1d(self.feature_dim, self.enc_dim, 1, bias=False)
        self.decoder = DPTDecoder(n_filters=enc_dim, window_size=win_len)

    def forward(self, mix):
        """
        mix: shape (batch, T)
        """
        batch_size = mix.shape[0]
        mix = self.dpt_encoder(mix)  # (B, E, L)

        score_ = self.enc_LN(mix)  # B, E, L
        score_ = self.dpt_separation(score_)  # B, nspk, T, N
        score_ = (
            score_.view(batch_size * self.num_spk, -1, self.feature_dim)
            .transpose(1, 2)
            .contiguous()
        )  # B*nspk, N, T
        score = self.mask_conv1x1(score_)  # [B*nspk, N, L] -> [B*nspk, E, L]
        score = score.view(
            batch_size, self.num_spk, self.enc_dim, -1
        )  # [B*nspk, E, L] -> [B, nspk, E, L]
        est_mask = F.relu(score)

        est_source = self.decoder(
            mix, est_mask
        )  # [B, E, L] + [B, nspk, E, L]--> [B, nspk, T]

        return est_source


class DPTEncoder(nn.Module):
    def __init__(self, n_filters: int = 64, window_size: int = 2):
        super().__init__()
        self.conv = nn.Conv1d(
            1, n_filters, kernel_size=window_size, stride=window_size // 2, bias=False
        )

    def forward(self, x):
        x = x.unsqueeze(1)
        x = F.relu(self.conv(x))
        return x


class TransformerEncoderLayer(torch.nn.Module):
    def __init__(
        self, d_model, nhead, hidden_size, dim_feedforward, dropout, activation="relu"
    ):
        super(TransformerEncoderLayer, self).__init__()
        self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)

        # Implementation of improved part
        self.lstm = LSTM(d_model, hidden_size, 1, bidirectional=True)
        self.dropout = Dropout(dropout)
        self.linear = Linear(hidden_size * 2, d_model)

        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.dropout1 = Dropout(dropout)
        self.dropout2 = Dropout(dropout)

        self.activation = _get_activation_fn(activation)

    def __setstate__(self, state):
        if "activation" not in state:
            state["activation"] = F.relu
        super(TransformerEncoderLayer, self).__setstate__(state)

    def forward(self, src, src_mask=None, src_key_padding_mask=None):
        r"""Pass the input through the encoder layer.
        Args:
            src: the sequnce to the encoder layer (required).
            src_mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).
        Shape:
            see the docs in Transformer class.
        """
        src2 = self.self_attn(
            src, src, src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
        )[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear(self.dropout(self.activation(self.lstm(src)[0])))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src


def _get_clones(module, N):
    return ModuleList([copy.deepcopy(module) for i in range(N)])


def _get_activation_fn(activation):
    if activation == "relu":
        return F.relu
    elif activation == "gelu":
        return F.gelu

    raise RuntimeError("activation should be relu/gelu, not {}".format(activation))


class SingleTransformer(nn.Module):
    """
    Container module for a single Transformer layer.
    args: input_size: int, dimension of the input feature.
    The input should have shape (batch, seq_len, input_size).
    """

    def __init__(self, input_size, hidden_size, dropout):
        super(SingleTransformer, self).__init__()
        self.transformer = TransformerEncoderLayer(
            d_model=input_size,
            nhead=4,
            hidden_size=hidden_size,
            dim_feedforward=hidden_size * 2,
            dropout=dropout,
        )

    def forward(self, input):
        # input shape: batch, seq, dim
        output = input
        transformer_output = (
            self.transformer(output.permute(1, 0, 2).contiguous())
            .permute(1, 0, 2)
            .contiguous()
        )
        return transformer_output


# dual-path transformer
class DPT(nn.Module):
    """
    Deep dual-path transformer.
    args:
        input_size: int, dimension of the input feature. The input should have shape
                    (batch, seq_len, input_size).
        hidden_size: int, dimension of the hidden state.
        output_size: int, dimension of the output size.
        num_layers: int, number of stacked Transformer layers. Default is 1.
        dropout: float, dropout ratio. Default is 0.
    """

    def __init__(self, input_size, hidden_size, output_size, num_layers=1, dropout=0):
        super(DPT, self).__init__()

        self.input_size = input_size
        self.output_size = output_size
        self.hidden_size = hidden_size

        # dual-path transformer
        self.row_transformer = nn.ModuleList([])
        self.col_transformer = nn.ModuleList([])
        for i in range(num_layers):
            self.row_transformer.append(
                SingleTransformer(input_size, hidden_size, dropout)
            )
            self.col_transformer.append(
                SingleTransformer(input_size, hidden_size, dropout)
            )

        # output layer
        self.output = nn.Sequential(nn.PReLU(), nn.Conv2d(input_size, output_size, 1))

    def forward(self, input):
        # input shape: batch, N, dim1, dim2
        # apply transformer on dim1 first and then dim2
        # output shape: B, output_size, dim1, dim2
        # input = input.to(device)
        batch_size, _, dim1, dim2 = input.shape
        output = input
        for i in range(len(self.row_transformer)):
            row_input = (
                output.permute(0, 3, 2, 1)
                .contiguous()
                .view(batch_size * dim2, dim1, -1)
            )  # B*dim2, dim1, N
            row_output = self.row_transformer[i](row_input)  # B*dim2, dim1, H
            row_output = (
                row_output.view(batch_size, dim2, dim1, -1)
                .permute(0, 3, 2, 1)
                .contiguous()
            )  # B, N, dim1, dim2
            output = row_output

            col_input = (
                output.permute(0, 2, 3, 1)
                .contiguous()
                .view(batch_size * dim1, dim2, -1)
            )  # B*dim1, dim2, N
            col_output = self.col_transformer[i](col_input)  # B*dim1, dim2, H
            col_output = (
                col_output.view(batch_size, dim1, dim2, -1)
                .permute(0, 3, 1, 2)
                .contiguous()
            )  # B, N, dim1, dim2
            output = col_output

        output = self.output(output)  # B, output_size, dim1, dim2

        return output


# base module for deep DPT
class DPT_base(nn.Module):
    def __init__(
        self, input_dim, feature_dim, hidden_dim, num_spk=2, layer=6, segment_size=250
    ):
        super(DPT_base, self).__init__()

        self.input_dim = input_dim
        self.feature_dim = feature_dim
        self.hidden_dim = hidden_dim

        self.layer = layer
        self.segment_size = segment_size
        self.num_spk = num_spk

        self.eps = 1e-8

        # bottleneck
        self.BN = nn.Conv1d(self.input_dim, self.feature_dim, 1, bias=False)

        # DPT model
        self.DPT = DPT(
            self.feature_dim,
            self.hidden_dim,
            self.feature_dim * self.num_spk,
            num_layers=layer,
        )

    def pad_segment(self, input, segment_size):
        # input is the features: (B, N, T)
        batch_size, dim, seq_len = input.shape
        segment_stride = segment_size // 2

        rest = segment_size - (segment_stride + seq_len % segment_size) % segment_size
        if rest > 0:
            pad = Variable(torch.zeros(batch_size, dim, rest)).type(input.type())
            input = torch.cat([input, pad], 2)

        pad_aux = Variable(torch.zeros(batch_size, dim, segment_stride)).type(
            input.type()
        )
        input = torch.cat([pad_aux, input, pad_aux], 2)

        return input, rest

    def split_feature(self, input, segment_size):
        # split the feature into chunks of segment size
        # input is the features: (B, N, T)

        input, rest = self.pad_segment(input, segment_size)
        batch_size, dim, seq_len = input.shape
        segment_stride = segment_size // 2

        segments1 = (
            input[:, :, :-segment_stride]
            .contiguous()
            .view(batch_size, dim, -1, segment_size)
        )
        segments2 = (
            input[:, :, segment_stride:]
            .contiguous()
            .view(batch_size, dim, -1, segment_size)
        )
        segments = (
            torch.cat([segments1, segments2], 3)
            .view(batch_size, dim, -1, segment_size)
            .transpose(2, 3)
        )

        return segments.contiguous(), rest

    def merge_feature(self, input, rest):
        # merge the splitted features into full utterance
        # input is the features: (B, N, L, K)

        batch_size, dim, segment_size, _ = input.shape
        segment_stride = segment_size // 2
        input = (
            input.transpose(2, 3)
            .contiguous()
            .view(batch_size, dim, -1, segment_size * 2)
        )  # B, N, K, L

        input1 = (
            input[:, :, :, :segment_size]
            .contiguous()
            .view(batch_size, dim, -1)[:, :, segment_stride:]
        )
        input2 = (
            input[:, :, :, segment_size:]
            .contiguous()
            .view(batch_size, dim, -1)[:, :, :-segment_stride]
        )

        output = input1 + input2
        if rest > 0:
            output = output[:, :, :-rest]

        return output.contiguous()  # B, N, T

    def forward(self, input):
        pass


class DPTSeparation(DPT_base):
    def __init__(self, *args, **kwargs):
        super(DPTSeparation, self).__init__(*args, **kwargs)

        # gated output layer
        self.output = nn.Sequential(
            nn.Conv1d(self.feature_dim, self.feature_dim, 1), nn.Tanh()
        )
        self.output_gate = nn.Sequential(
            nn.Conv1d(self.feature_dim, self.feature_dim, 1), nn.Sigmoid()
        )

    def forward(self, input):
        # input = input.to(device)
        # input: (B, E, T)
        batch_size, E, seq_length = input.shape

        enc_feature = self.BN(input)  # (B, E, L)-->(B, N, L)
        # split the encoder output into overlapped, longer segments
        enc_segments, enc_rest = self.split_feature(
            enc_feature, self.segment_size
        )  # B, N, L, K: L is the segment_size
        # print('enc_segments.shape {}'.format(enc_segments.shape))
        # pass to DPT
        output = self.DPT(enc_segments).view(
            batch_size * self.num_spk, self.feature_dim, self.segment_size, -1
        )  # B*nspk, N, L, K

        # overlap-and-add of the outputs
        output = self.merge_feature(output, enc_rest)  # B*nspk, N, T

        # gated output layer for filter generation
        bf_filter = self.output(output) * self.output_gate(output)  # B*nspk, K, T
        bf_filter = (
            bf_filter.transpose(1, 2)
            .contiguous()
            .view(batch_size, self.num_spk, -1, self.feature_dim)
        )  # B, nspk, T, N

        return bf_filter


class DPTDecoder(nn.Module):
    def __init__(self, n_filters: int = 64, window_size: int = 2):
        super().__init__()
        self.W = window_size
        self.basis_signals = nn.Linear(n_filters, window_size, bias=False)

    def forward(self, mixture, mask):
        """
        mixture: (batch, n_filters, L)
        mask: (batch, sources, n_filters, L)
        """
        source_w = torch.unsqueeze(mixture, 1) * mask  # [B, C, E, L]
        source_w = torch.transpose(source_w, 2, 3)  # [B, C, L, E]
        # S = DV
        est_source = self.basis_signals(source_w)  # [B, C, L, W]
        est_source = overlap_and_add(est_source, self.W // 2)  # B x C x T
        return est_source


def overlap_and_add(signal, frame_step):
    """Reconstructs a signal from a framed representation.
    Adds potentially overlapping frames of a signal with shape
    `[..., frames, frame_length]`, offsetting subsequent frames by `frame_step`.
    The resulting tensor has shape `[..., output_size]` where
        output_size = (frames - 1) * frame_step + frame_length
    Args:
        signal: A [..., frames, frame_length] Tensor.
        All dimensions may be unknown, and rank must be at least 2.
        frame_step: An integer denoting overlap offsets. Must be less than or equal to frame_length.
    Returns:
        A Tensor with shape [..., output_size] containing the overlap-added frames of signal's
        inner-most two dimensions.
        output_size = (frames - 1) * frame_step + frame_length
    Based on https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/contrib/signal/python/ops/reconstruction_ops.py
    """
    outer_dimensions = signal.size()[:-2]
    frames, frame_length = signal.size()[-2:]

    subframe_length = math.gcd(frame_length, frame_step)  # gcd=Greatest Common Divisor
    subframe_step = frame_step // subframe_length
    subframes_per_frame = frame_length // subframe_length
    output_size = frame_step * (frames - 1) + frame_length
    output_subframes = output_size // subframe_length

    subframe_signal = signal.reshape(*outer_dimensions, -1, subframe_length)

    frame = torch.arange(0, output_subframes).unfold(
        0, subframes_per_frame, subframe_step
    )
    frame = signal.new_tensor(frame).long()  # signal may in GPU or CPU
    frame = frame.contiguous().view(-1)

    result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length)
    result.index_add_(-2, frame, subframe_signal)
    result = result.view(*outer_dimensions, -1)
    return result