File size: 5,971 Bytes
90cacdf
 
 
 
 
 
ff526b3
 
 
90cacdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff526b3
 
 
 
 
 
 
90cacdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff526b3
90cacdf
 
ff526b3
90cacdf
ff526b3
 
 
 
 
 
 
 
 
 
78820af
ff526b3
 
90cacdf
 
 
 
 
 
 
 
78820af
 
 
ff526b3
 
78820af
90cacdf
 
78820af
ff526b3
90cacdf
 
 
 
78820af
90cacdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff526b3
90cacdf
 
 
 
 
 
 
 
 
 
ff526b3
90cacdf
 
 
 
 
 
 
 
 
 
 
 
ff526b3
 
90cacdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch
from torch import Tensor, nn
import pytorch_lightning as pl
from einops import rearrange
import wandb
from audio_diffusion_pytorch import DiffusionModel
from auraloss.time import SISDRLoss
from auraloss.freq import MultiResolutionSTFTLoss, STFTLoss
from torch.nn import L1Loss

from umx.openunmix.model import OpenUnmix, Separator


class RemFXModel(pl.LightningModule):
    def __init__(
        self,
        lr: float,
        lr_beta1: float,
        lr_beta2: float,
        lr_eps: float,
        lr_weight_decay: float,
        sample_rate: float,
        network: nn.Module,
    ):
        super().__init__()
        self.lr = lr
        self.lr_beta1 = lr_beta1
        self.lr_beta2 = lr_beta2
        self.lr_eps = lr_eps
        self.lr_weight_decay = lr_weight_decay
        self.sample_rate = sample_rate
        self.model = network
        self.metrics = torch.nn.ModuleDict(
            {
                "SISDR": SISDRLoss(),
                "STFT": STFTLoss(),
                "L1": L1Loss(),
            }
        )

    @property
    def device(self):
        return next(self.model.parameters()).device

    def configure_optimizers(self):
        optimizer = torch.optim.AdamW(
            list(self.model.parameters()),
            lr=self.lr,
            betas=(self.lr_beta1, self.lr_beta2),
            eps=self.lr_eps,
            weight_decay=self.lr_weight_decay,
        )
        return optimizer

    def training_step(self, batch, batch_idx):
        loss = self.common_step(batch, batch_idx, mode="train")
        return loss

    def validation_step(self, batch, batch_idx):
        loss = self.common_step(batch, batch_idx, mode="valid")
        return loss

    def common_step(self, batch, batch_idx, mode: str = "train"):
        loss, output = self.model(batch)
        self.log(f"{mode}_loss", loss)
        x, y, label = batch
        # Metric logging
        for metric in self.metrics:
            self.log(
                f"{mode}_{metric}",
                self.metrics[metric](output, y),
                on_step=False,
                on_epoch=True,
                logger=True,
                prog_bar=True,
                sync_dist=True,
            )

        return loss

    def on_validation_epoch_start(self):
        self.log_next = True

    def on_validation_batch_start(self, batch, batch_idx, dataloader_idx):
        if self.log_next:
            x, target, label = batch
            self.model.eval()
            with torch.no_grad():
                y = self.model.sample(x)

            # Concat samples together for easier viewing in dashboard
            concat_samples = torch.cat([y, x, target], dim=-1)
            log_wandb_audio_batch(
                logger=self.logger,
                id="prediction_input_target",
                samples=concat_samples.cpu(),
                sampling_rate=self.sample_rate,
                caption=f"Epoch {self.current_epoch}",
            )
            self.log_next = False
            self.model.train()


class OpenUnmixModel(torch.nn.Module):
    def __init__(
        self,
        n_fft: int = 2048,
        hop_length: int = 512,
        n_channels: int = 1,
        alpha: float = 0.3,
        sample_rate: int = 22050,
    ):
        super().__init__()
        self.n_channels = n_channels
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.alpha = alpha
        window = torch.hann_window(n_fft)
        self.register_buffer("window", window)

        self.num_bins = self.n_fft // 2 + 1
        self.sample_rate = sample_rate
        self.model = OpenUnmix(
            nb_channels=self.n_channels,
            nb_bins=self.num_bins,
        )
        self.separator = Separator(
            target_models={"other": self.model},
            nb_channels=self.n_channels,
            sample_rate=self.sample_rate,
            n_fft=self.n_fft,
            n_hop=self.hop_length,
        )
        self.loss_fn = MultiResolutionSTFTLoss(
            n_bins=self.num_bins, sample_rate=self.sample_rate
        )

    def forward(self, batch):
        x, target, label = batch
        X = spectrogram(x, self.window, self.n_fft, self.hop_length, self.alpha)
        Y = self.model(X)
        sep_out = self.separator(x).squeeze(1)
        loss = self.loss_fn(sep_out, target)

        return loss, sep_out

    def sample(self, x: Tensor) -> Tensor:
        return self.separator(x).squeeze(1)


class DiffusionGenerationModel(nn.Module):
    def __init__(self, n_channels: int = 1):
        super().__init__()
        self.model = DiffusionModel(in_channels=n_channels)

    def forward(self, batch):
        x, target, label = batch
        sampled_out = self.model.sample(x)
        return self.model(x), sampled_out

    def sample(self, x: Tensor, num_steps: int = 10) -> Tensor:
        noise = torch.randn(x.shape).to(x)
        return self.model.sample(noise, num_steps=num_steps)


def log_wandb_audio_batch(
    logger: pl.loggers.WandbLogger,
    id: str,
    samples: Tensor,
    sampling_rate: int,
    caption: str = "",
):
    num_items = samples.shape[0]
    samples = rearrange(samples, "b c t -> b t c")
    for idx in range(num_items):
        logger.experiment.log(
            {
                f"{id}_{idx}": wandb.Audio(
                    samples[idx].cpu().numpy(),
                    caption=caption,
                    sample_rate=sampling_rate,
                )
            }
        )


def spectrogram(
    x: torch.Tensor,
    window: torch.Tensor,
    n_fft: int,
    hop_length: int,
    alpha: float,
) -> torch.Tensor:
    bs, chs, samp = x.size()
    x = x.view(bs * chs, -1)  # move channels onto batch dim

    X = torch.stft(
        x,
        n_fft=n_fft,
        hop_length=hop_length,
        window=window,
        return_complex=True,
    )

    # move channels back
    X = X.view(bs, chs, X.shape[-2], X.shape[-1])

    return torch.pow(X.abs() + 1e-8, alpha)