File size: 4,693 Bytes
7b8633c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os
import requests
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
import tensorflow as tf
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import gradio as gr

MODEL_PATH = 'desnet2.h5'
model = load_model(MODEL_PATH)
classes = ['American Bollworm on Cotton', 'Anthracnose on Cotton', 'Aphids', 'Army worm', 'Carpetweeds', 'Crabgrass', 'Eclipta',
'Flag Smut', 'Goosegrass', 'Healthy', 'Leaf Curl', 'Leaf smut', 'Morningglory', 'Mosaic sugarcane', 'Nutsedge', 'PalmerAmaranth',
'Powdery_Mildew', 'Prickly Sida', 'Purslane', 'Ragweed', 'RedRot sugarcane', 'RedRust sugarcane', 'Rice Blast', 'Sicklepod',
'SpottedSpurge', 'SpurredAnoda', 'Sugarcane Healthy', 'Swinecress', 'Target_spot', 'Tungro', 'Waterhemp', 'Wheat Brown leaf Rust',
'Wheat Stem fly', 'Wheat aphid', 'Wheat black rust', 'Wheat leaf blight', 'Wheat mite', 'Wheat powdery mildew', 'Wheat scab',
'Wheat___Yellow_Rust', 'Wilt', 'Yellow Rust Sugarcane', 'bacterial_blight in Cotton', 'bollrot on Cotton', 'bollworm on Cotton',
'cotton mealy bug', 'cotton whitefly', 'curl_virus', 'fussarium_wilt', 'maize ear rot', 'maize fall armyworm', 'maize stem borer',
'pink bollworm in cotton', 'red cotton bug', 'thirps on  cotton']

def predict_disease(img):
    img = img.resize((256, 256))
    img = image.img_to_array(img)
    img = img / 255
    img = np.expand_dims(img, axis=0)
    result = model.predict(img)
    result = result.ravel()
    max_index = np.argmax(result)
    pred = str(classes[max_index])
    return pred

def weather_forecasting(city):
    api_key = "74fbb60fa9b326bf46b41f8db923ccaa"
    url = f"http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}&units=metric"
    response = requests.get(url)
    data = response.json()
    if data["cod"] != "404":
        weather_data = {
            "city": city,
            "temperature": data["main"]["temp"],
            "pressure": data["main"]["pressure"],
            "humidity": data["main"]["humidity"],
            "description": data["weather"][0]["description"],
        }
        return weather_data
    else:
        return "City not found."

def calculate_fertilizer(area, nitrogen, phosphorus, potassium):
    total_nitrogen = area * nitrogen
    total_phosphorus = area * phosphorus
    total_potassium = area * potassium
    return total_nitrogen, total_phosphorus, total_potassium

def fertilizer_advice(nitrogen, phosphorus, potassium):
    user_input = f'Provide advice on using Nitrogen: {nitrogen} kg, Phosphorus: {phosphorus} kg, Potassium: {potassium} kg for cotton fields.'
    # Mock response for the demonstration
    return f"Advice based on Nitrogen: {nitrogen}, Phosphorus: {phosphorus}, Potassium: {potassium}"

with gr.Blocks() as demo:
    gr.Markdown("# Cotton Disease Detection and Advisory System")
    
    with gr.Tab("Disease Detection"):
        gr.Markdown("## Upload an Image of the Cotton Plant")
        img_input = gr.Image(type="pil")
        disease_output = gr.Textbox(label="Predicted Disease")
        gr.Button("Predict").click(predict_disease, inputs=img_input, outputs=disease_output)
    
    with gr.Tab("Weather Forecasting"):
        gr.Markdown("## Get Weather Data for Your City")
        city_input = gr.Textbox(label="City Name")
        weather_output = gr.JSON(label="Weather Data")
        gr.Button("Get Weather").click(weather_forecasting, inputs=city_input, outputs=weather_output)
    
    with gr.Tab("Fertilizer Calculator"):
        gr.Markdown("## Calculate Fertilizer Needs")
        area_input = gr.Number(label="Area (hectares)")
        nitrogen_input = gr.Number(label="Nitrogen (kg/ha)")
        phosphorus_input = gr.Number(label="Phosphorus (kg/ha)")
        potassium_input = gr.Number(label="Potassium (kg/ha)")
        fertilizer_output = gr.JSON(label="Total Fertilizer Needs")
        gr.Button("Calculate").click(calculate_fertilizer, 
                                     inputs=[area_input, nitrogen_input, phosphorus_input, potassium_input], 
                                     outputs=fertilizer_output)
    
    with gr.Tab("Fertilizer Advice"):
        gr.Markdown("## Get Fertilizer Advice")
        nitrogen_advice_input = gr.Number(label="Nitrogen")
        phosphorus_advice_input = gr.Number(label="Phosphorus")
        potassium_advice_input = gr.Number(label="Potassium")
        advice_output = gr.Textbox(label="Advice")
        gr.Button("Get Advice").click(fertilizer_advice, 
                                      inputs=[nitrogen_advice_input, phosphorus_advice_input, potassium_advice_input], 
                                      outputs=advice_output)

demo.launch(debug=True)