Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
# Load the summarization model from Hugging Face | |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", revision="a4f8f3e") | |
# Streamlit app | |
def main(): | |
# Set the title and description of the app | |
st.title("Text Summarizer App") | |
st.write( | |
"Enter a piece of text, select the length of the summary, and get a concise summary!" | |
) | |
# Input text box for user input | |
input_text = st.text_area("Enter your text here:") | |
# Length selector for summary | |
summary_length = st.slider("Select summary length:", min_value=50, max_value=500, value=150, step=50) | |
# Check if the user has entered any text | |
if st.button("Generate Summary"): | |
if not input_text: | |
st.warning("Please enter some text.") | |
else: | |
# Generate summary using the Hugging Face summarization model | |
summary = summarizer(input_text, max_length=summary_length, min_length=50, length_penalty=2.0, num_beams=4) | |
st.subheader("Summary:") | |
st.write(summary[0]["summary_text"]) | |
# Run the app | |
if __name__ == "__main__": | |
main() | |