Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import BartTokenizer, BartForSequenceClassification | |
def summarize_text(data, max_length): | |
model_name = "facebook/bart-large-cnn" | |
model = BartForSequenceClassification.from_pretrained(model_name) | |
tokenizer = BartTokenizer.from_pretrained(model_name) | |
inputs = tokenizer(data, max_length=max_length, return_tensors="pt", truncation=True) | |
summary_ids = model.generate(inputs["input_ids"]) | |
summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary_text | |
def main(): | |
st.title("Data Summarization") | |
data = st.text_area("Enter your Data", "") | |
max_length = st.slider("Summary Length", 20, 1000, 200) | |
if st.button("Submit"): | |
if not data: | |
st.warning("Please enter some text for summarization.") | |
else: | |
summary = summarize_text(data, max_length) | |
st.text_area("Your Summary", summary, height=200) | |
if __name__ == "__main__": | |
main() | |