from langchain.tools import BaseTool from transformers import BlipProcessor, BlipForConditionalGeneration, DetrImageProcessor, DetrForObjectDetection from PIL import Image import torch class ImageCaptionTool(BaseTool): name = "Image captioner" description = "Use this tool when given the path to an image that you would like to be described. " \ "It will return a simple caption describing the image." def _run(self, img_path): image = Image.open(img_path).convert('RGB') model_name = "Salesforce/blip-image-captioning-large" device = "cpu" # cuda processor = BlipProcessor.from_pretrained(model_name) model = BlipForConditionalGeneration.from_pretrained(model_name).to(device) inputs = processor(image, return_tensors='pt').to(device) output = model.generate(**inputs, max_new_tokens=20) caption = processor.decode(output[0], skip_special_tokens=True) return caption def _arun(self, query: str): raise NotImplementedError("This tool does not support async") class ObjectDetectionTool(BaseTool): name = "Object detector" description = "Use this tool when given the path to an image that you would like to detect objects. " \ "It will return a list of all detected objects. Each element in the list in the format: " \ "[x1, y1, x2, y2] class_name confidence_score." def _run(self, img_path): image = Image.open(img_path).convert('RGB') processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) # convert outputs (bounding boxes and class logits) to COCO API # let's only keep detections with score > 0.9 target_sizes = torch.tensor([image.size[::-1]]) results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] detections = "" for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): detections += '[{}, {}, {}, {}]'.format(int(box[0]), int(box[1]), int(box[2]), int(box[3])) detections += ' {}'.format(model.config.id2label[int(label)]) detections += ' {}\n'.format(float(score)) return detections def _arun(self, query: str): raise NotImplementedError("This tool does not support async")