Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
def detect_anomalies(df, threshold):
|
6 |
+
"""
|
7 |
+
Detects users with login attempts exceeding the threshold.
|
8 |
+
Args:
|
9 |
+
- df: DataFrame containing user activity data.
|
10 |
+
- threshold: Number of login attempts to consider as anomalous.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
- DataFrame of detected anomalies.
|
14 |
+
"""
|
15 |
+
anomalies = df[df['login_attempts'] > threshold]
|
16 |
+
return anomalies
|
17 |
+
|
18 |
+
# Streamlit app layout
|
19 |
+
st.title('User and Entity Behavior Analytics (UEBA)')
|
20 |
+
|
21 |
+
# File uploader
|
22 |
+
uploaded_file = st.file_uploader("Upload your CSV file", type="csv")
|
23 |
+
|
24 |
+
# Threshold input
|
25 |
+
threshold = st.slider("Set anomaly detection threshold", min_value=1, max_value=10, value=3)
|
26 |
+
|
27 |
+
if uploaded_file is not None:
|
28 |
+
df = pd.read_csv(uploaded_file)
|
29 |
+
|
30 |
+
if st.button('Detect Anomalies'):
|
31 |
+
anomalies = detect_anomalies(df, threshold)
|
32 |
+
if not anomalies.empty:
|
33 |
+
st.write("Detected Anomalies:")
|
34 |
+
st.dataframe(anomalies)
|
35 |
+
else:
|
36 |
+
st.write("No anomalies detected with the current threshold.")
|