Spaces:
Sleeping
Sleeping
# streamlit_app.py | |
import streamlit as st | |
from fastai.vision.all import * | |
import shutil | |
import os | |
# Function to get the label from the file name | |
def get_label(file_name): | |
return file_name.split('-')[0] | |
# Function to prepare data (similar to your code) | |
def prepare_data(food_path, label_a, label_b): | |
for img in get_image_files(food_path): | |
if label_a in str(img): | |
img.rename(f"{img.parent}/{label_a}-{img.name}") | |
elif label_b in str(img): | |
img.rename(f"{img.parent}/{label_b}-{img.name}") | |
else: | |
os.remove(img) | |
# Function to train the model | |
def train_model(food_path, label_func): | |
dls = ImageDataLoaders.from_name_func( | |
food_path, get_image_files(food_path), valid_pct=0.2, seed=420, | |
label_func=label_func, item_tfms=Resize(230) | |
) | |
learn = cnn_learner(dls, resnet34, metrics=error_rate, pretrained=True) | |
learn.fine_tune(epochs=1) | |
return learn | |
# ... (previous code) | |
# ... (previous code) | |
# Streamlit app | |
def main(): | |
st.title("Food Classifier Streamlit App") | |
# Sidebar options | |
options = ["Train Model", "Upload Image", "Test Random Images", "Confusion Matrix"] | |
choice = st.sidebar.selectbox("Choose an option", options) | |
if choice == "Train Model": | |
st.subheader("Training the Model") | |
food_path = Path("~/.fastai/data/food-101/food-101").expanduser() | |
if not food_path.exists(): | |
try: | |
food_path = untar_data(URLs.FOOD) | |
except FileExistsError: | |
st.warning("Data directory already exists. Skipping download.") | |
label_a = st.text_input("Enter label A:", "samosa") | |
label_b = st.text_input("Enter label B:", "hot_and_sour_soup") | |
prepare_data(food_path, label_a, label_b) | |
learn = train_model(food_path, get_label) | |
st.session_state.model = learn # Save the model to session state | |
st.success("Model trained successfully!") | |
# ... (rest of the code remains unchanged) | |
elif choice == "Upload Image": | |
st.subheader("Upload Your Own Images") | |
if "model" not in st.session_state: | |
st.warning("Please train the model first.") | |
else: | |
uploaded_files = st.file_uploader("Choose images", type=["jpg", "jpeg", "png"], accept_multiple_files=True) | |
if uploaded_files: | |
for img in uploaded_files: | |
img = PILImage.create(img) | |
label, _, probs = st.session_state.model.predict(img) | |
st.image(img, caption=f"This is a {label}.") | |
st.write(f"{label_a}: {probs[1].item():.6f}") | |
st.write(f"{label_b}: {probs[0].item():.6f}") | |
if uploaded_files: | |
for img in uploaded_files: | |
img = PILImage.create(img) | |
label, _, probs = st.session_state.model.predict(img) | |
st.image(img, caption=f"This is a {label}.") | |
st.write(f"{label_a}: {probs[1].item():.6f}") | |
st.write(f"{label_b}: {probs[0].item():.6f}") | |
elif choice == "Test Random Images": | |
st.subheader("Test Using Images in Dataset") | |
if "model" not in st.session_state: | |
st.warning("Please train the model first.") | |
else: | |
for i in range(0, 5): # Change 5 to the number of images you want to display | |
random_index = random.randint(0, len(get_image_files(food_path)) - 1) | |
img_path = get_image_files(food_path)[random_index] | |
img = mpimg.imread(img_path) | |
label, _, probs = st.session_state.model.predict(img) | |
st.image(img, caption=f"Predicted label: {label}") | |
elif choice == "Confusion Matrix": | |
st.subheader("Confusion Matrix") | |
if "model" not in st.session_state: | |
st.warning("Please train the model first.") | |
else: | |
interp = ClassificationInterpretation.from_learner(st.session_state.model) | |
st.pyplot(interp.plot_confusion_matrix()) | |
# Run the Streamlit app | |
if __name__ == "__main__": | |
main() | |