import gdown import cv2 import numpy as np import gradio as gr import matplotlib.pyplot as plt from gradio_client import Client, handle_file # ✅ Dictionary of public Google Drive links for reference signatures drive_links = { 1: "https://drive.google.com/file/d/1xtzL6-TpN4EVyaFUF4MM4ssjAZqZutF8/view?usp=drive_link", 2: "https://drive.google.com/file/d/1UpPfOlDXoWwB5Ub530uhUrOVnUnWYvpQ/view?usp=drive_link", 3: "https://drive.google.com/file/d/1-M_PND4PK3tSLY705olnsswOk5bNoOFa/view?usp=drive_link", 4: "https://drive.google.com/file/d/1FL1uLEXlWW-nQYNoaBARiVs0N0XAwsvW/view?usp=drive_link", 5: "https://drive.google.com/file/d/1nZhl1CkvuH-KA4ErAslD-91W2QnBajhx/view?usp=drive_link", 6: "https://drive.google.com/file/d/1SHEgykTZN9lGdDaR6PTl9P01-Zlpu6cZ/view?usp=drive_link", 7: "https://drive.google.com/file/d/1gRE9SmvT7OBw8JYCyx7ehMs3lBpiX-Bp/view?usp=drive_link" } # ✅ Function to extract file ID from Google Drive link def extract_file_id(drive_url): return drive_url.split("/d/")[1].split("/view")[0] # ✅ Function to download a file from Google Drive def download_from_drive(file_id, save_path): gdown.download(f"https://drive.google.com/uc?id={file_id}", save_path, quiet=False) return save_path # ✅ Function to extract the signature from a document image def extract_signature(document_image_path): client = Client("tech4humans/signature-detection") result = client.predict( image=handle_file(document_image_path), conf_thres=0.25, iou_thres=0.5, api_name="/process_image" ) extracted_signature_info = result[0] extracted_signature_path = ( extracted_signature_info.get("path") if isinstance(extracted_signature_info, dict) else extracted_signature_info if isinstance(extracted_signature_info, str) else None ) if extracted_signature_path: image = cv2.imread(extracted_signature_path) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2) contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) valid_contours = [] for cnt in contours: x, y, w, h = cv2.boundingRect(cnt) area = w * h aspect_ratio = w / float(h) if 500 < area < 50000 and 0.2 < aspect_ratio < 5.0: valid_contours.append((x, y, w, h)) if valid_contours: x, y, w, h = max(valid_contours, key=lambda b: b[2] * b[3]) cropped_signature = image[y:y+h, x:x+w] return cropped_signature return None # ✅ ORB Feature Matching for Signature Comparison def orb_similarity(img1, img2, distance_threshold=50): gray1, gray2 = [ cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if len(img.shape) == 3 else img for img in [img1, img2] ] orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(gray1, None) kp2, des2 = orb.detectAndCompute(gray2, None) if des1 is None or des2 is None: return 0, None bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches = sorted(bf.match(des1, des2), key=lambda x: x.distance) good_matches = [m for m in matches if m.distance < distance_threshold] similarity = len(good_matches) / len(matches) if matches else 0 return similarity, (kp1, kp2, good_matches, matches) # ✅ Function to process the uploaded document image and selected reference number def verify_signature(document_image, reference_number): if reference_number not in drive_links: return "Invalid reference number selected.", None # Download reference signature file_id = extract_file_id(drive_links[reference_number]) reference_image_path = f"reference_signature_{reference_number}.jpg" download_from_drive(file_id, reference_image_path) # Extract signature from the document cropped_signature = extract_signature(document_image) if cropped_signature is None: return "Signature extraction failed.", None # Load reference signature reference_img = cv2.imread(reference_image_path) if reference_img is None: return "Error: Could not load the reference image.", None # Compute similarity similarity, details = orb_similarity(cropped_signature, reference_img) similarity_percentage = round(similarity * 100, 2) # Classification based on similarity score if similarity_percentage > 55: classification = "✅ Matched" elif 40 <= similarity_percentage <= 55: classification = "⚠️ Manual Check Recommended" else: classification = "❌ Not Matched" # Generate visualization of matches matched_img = None if details is not None: kp1, kp2, good_matches, _ = details matched_img = cv2.drawMatches(cropped_signature, kp1, reference_img, kp2, good_matches, None, flags=2) return f"🔍 Similarity Score: {similarity_percentage}%\n📌 {classification}", matched_img # ✅ Gradio Interface interface = gr.Interface( fn=verify_signature, inputs=[ gr.Image(type="filepath", label="Upload Document Image"), gr.Number(label="Enter Reference policynumber", precision=0) ], outputs=[ gr.Textbox(label="Verification Result"), gr.Image(label="Signature Matching Visualization") ], title="🖊️ Signature Verification System", description="Upload a document with a signature, select a policy number, and verify its authenticity.", theme="compact" ) # ✅ Launch Gradio App interface.launch()