signatureapi / app.py
786avinash's picture
Update app.py
15bce9c verified
raw
history blame
6.02 kB
import gdown
import cv2
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
from gradio_client import Client, handle_file
# βœ… Dictionary of public Google Drive links for reference signatures
drive_links = {
1: "https://drive.google.com/file/d/1xtzL6-TpN4EVyaFUF4MM4ssjAZqZutF8/view?usp=drive_link",
2: "https://drive.google.com/file/d/1UpPfOlDXoWwB5Ub530uhUrOVnUnWYvpQ/view?usp=drive_link",
3: "https://drive.google.com/file/d/1-M_PND4PK3tSLY705olnsswOk5bNoOFa/view?usp=drive_link",
4: "https://drive.google.com/file/d/1FL1uLEXlWW-nQYNoaBARiVs0N0XAwsvW/view?usp=drive_link",
5: "https://drive.google.com/file/d/1nZhl1CkvuH-KA4ErAslD-91W2QnBajhx/view?usp=drive_link",
6: "https://drive.google.com/file/d/1SHEgykTZN9lGdDaR6PTl9P01-Zlpu6cZ/view?usp=drive_link",
7: "https://drive.google.com/file/d/1gRE9SmvT7OBw8JYCyx7ehMs3lBpiX-Bp/view?usp=drive_link"
}
# βœ… Function to extract file ID from Google Drive link
def extract_file_id(drive_url):
return drive_url.split("/d/")[1].split("/view")[0]
# βœ… Function to download a file from Google Drive
def download_from_drive(file_id, save_path):
gdown.download(f"https://drive.google.com/uc?id={file_id}", save_path, quiet=False)
return save_path
# βœ… Function to extract the signature from a document image
def extract_signature(document_image_path):
client = Client("tech4humans/signature-detection")
result = client.predict(
image=handle_file(document_image_path),
conf_thres=0.25,
iou_thres=0.5,
api_name="/process_image"
)
extracted_signature_info = result[0]
extracted_signature_path = (
extracted_signature_info.get("path") if isinstance(extracted_signature_info, dict)
else extracted_signature_info if isinstance(extracted_signature_info, str)
else None
)
if extracted_signature_path:
image = cv2.imread(extracted_signature_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, 11, 2)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
valid_contours = []
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
area = w * h
aspect_ratio = w / float(h)
if 500 < area < 50000 and 0.2 < aspect_ratio < 5.0:
valid_contours.append((x, y, w, h))
if valid_contours:
x, y, w, h = max(valid_contours, key=lambda b: b[2] * b[3])
cropped_signature = image[y:y+h, x:x+w]
return cropped_signature
return None
# βœ… ORB Feature Matching for Signature Comparison
def orb_similarity(img1, img2, distance_threshold=50):
gray1, gray2 = [
cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if len(img.shape) == 3 else img
for img in [img1, img2]
]
orb = cv2.ORB_create()
kp1, des1 = orb.detectAndCompute(gray1, None)
kp2, des2 = orb.detectAndCompute(gray2, None)
if des1 is None or des2 is None:
return 0, None
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = sorted(bf.match(des1, des2), key=lambda x: x.distance)
good_matches = [m for m in matches if m.distance < distance_threshold]
similarity = len(good_matches) / len(matches) if matches else 0
return similarity, (kp1, kp2, good_matches, matches)
# βœ… Function to process the uploaded document image and selected reference number
def verify_signature(document_image, reference_number):
if reference_number not in drive_links:
return "Invalid reference number selected.", None
# Download reference signature
file_id = extract_file_id(drive_links[reference_number])
reference_image_path = f"reference_signature_{reference_number}.jpg"
download_from_drive(file_id, reference_image_path)
# Extract signature from the document
cropped_signature = extract_signature(document_image)
if cropped_signature is None:
return "Signature extraction failed.", None
# Load reference signature
reference_img = cv2.imread(reference_image_path)
if reference_img is None:
return "Error: Could not load the reference image.", None
# Compute similarity
similarity, details = orb_similarity(cropped_signature, reference_img)
similarity_percentage = round(similarity * 100, 2)
# Classification based on similarity score
if similarity_percentage > 55:
classification = "βœ… Matched"
elif 40 <= similarity_percentage <= 55:
classification = "⚠️ Manual Check Recommended"
else:
classification = "❌ Not Matched"
# Generate visualization of matches
matched_img = None
if details is not None:
kp1, kp2, good_matches, _ = details
matched_img = cv2.drawMatches(cropped_signature, kp1, reference_img, kp2, good_matches, None, flags=2)
return f"πŸ” Similarity Score: {similarity_percentage}%\nπŸ“Œ {classification}", matched_img
import gradio as gr
# βœ… Ensure you have the correct function for signature verification
def verify_signature(document_image, policy_number):
return f"Processing {document_image} with policy number {policy_number}"
# βœ… Corrected Gradio Interface (Removed `theme="compact"`)
interface = gr.Interface(
fn=verify_signature,
inputs=[
gr.Image(type="filepath", label="Upload Document Image"),
gr.Number(label="Enter the Policy Number", precision=0)
],
outputs=[
gr.Textbox(label="Verification Result"),
gr.Image(label="Signature Matching Visualization")
],
title="πŸ–ŠοΈ Signature Verification System",
description="Upload a document with a signature, select a policy number, and verify its authenticity."
)
# βœ… Corrected `launch()` command (Removed `enable_queue`)
interface.launch(server_name="0.0.0.0", server_port=7860,show_api=True)