Spaces:
Running
Running
import gdown | |
import cv2 | |
import numpy as np | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
from gradio_client import Client, handle_file | |
# β Dictionary of public Google Drive links for reference signatures | |
drive_links = { | |
1: "https://drive.google.com/file/d/1xtzL6-TpN4EVyaFUF4MM4ssjAZqZutF8/view?usp=drive_link", | |
2: "https://drive.google.com/file/d/1UpPfOlDXoWwB5Ub530uhUrOVnUnWYvpQ/view?usp=drive_link", | |
3: "https://drive.google.com/file/d/1-M_PND4PK3tSLY705olnsswOk5bNoOFa/view?usp=drive_link", | |
4: "https://drive.google.com/file/d/1FL1uLEXlWW-nQYNoaBARiVs0N0XAwsvW/view?usp=drive_link", | |
5: "https://drive.google.com/file/d/1nZhl1CkvuH-KA4ErAslD-91W2QnBajhx/view?usp=drive_link", | |
6: "https://drive.google.com/file/d/1SHEgykTZN9lGdDaR6PTl9P01-Zlpu6cZ/view?usp=drive_link", | |
7: "https://drive.google.com/file/d/1gRE9SmvT7OBw8JYCyx7ehMs3lBpiX-Bp/view?usp=drive_link" | |
} | |
# β Function to extract file ID from Google Drive link | |
def extract_file_id(drive_url): | |
return drive_url.split("/d/")[1].split("/view")[0] | |
# β Function to download a file from Google Drive | |
def download_from_drive(file_id, save_path): | |
gdown.download(f"https://drive.google.com/uc?id={file_id}", save_path, quiet=False) | |
return save_path | |
# β Function to extract the signature from a document image | |
def extract_signature(document_image_path): | |
client = Client("tech4humans/signature-detection") | |
result = client.predict( | |
image=handle_file(document_image_path), | |
conf_thres=0.25, | |
iou_thres=0.5, | |
api_name="/process_image" | |
) | |
extracted_signature_info = result[0] | |
extracted_signature_path = ( | |
extracted_signature_info.get("path") if isinstance(extracted_signature_info, dict) | |
else extracted_signature_info if isinstance(extracted_signature_info, str) | |
else None | |
) | |
if extracted_signature_path: | |
image = cv2.imread(extracted_signature_path) | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY_INV, 11, 2) | |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
valid_contours = [] | |
for cnt in contours: | |
x, y, w, h = cv2.boundingRect(cnt) | |
area = w * h | |
aspect_ratio = w / float(h) | |
if 500 < area < 50000 and 0.2 < aspect_ratio < 5.0: | |
valid_contours.append((x, y, w, h)) | |
if valid_contours: | |
x, y, w, h = max(valid_contours, key=lambda b: b[2] * b[3]) | |
cropped_signature = image[y:y+h, x:x+w] | |
return cropped_signature | |
return None | |
# β ORB Feature Matching for Signature Comparison | |
def orb_similarity(img1, img2, distance_threshold=50): | |
gray1, gray2 = [ | |
cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if len(img.shape) == 3 else img | |
for img in [img1, img2] | |
] | |
orb = cv2.ORB_create() | |
kp1, des1 = orb.detectAndCompute(gray1, None) | |
kp2, des2 = orb.detectAndCompute(gray2, None) | |
if des1 is None or des2 is None: | |
return 0, None | |
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) | |
matches = sorted(bf.match(des1, des2), key=lambda x: x.distance) | |
good_matches = [m for m in matches if m.distance < distance_threshold] | |
similarity = len(good_matches) / len(matches) if matches else 0 | |
return similarity, (kp1, kp2, good_matches, matches) | |
# β Function to process the uploaded document image and selected reference number | |
def verify_signature(document_image, reference_number): | |
if reference_number not in drive_links: | |
return "Invalid reference number selected.", None | |
# Download reference signature | |
file_id = extract_file_id(drive_links[reference_number]) | |
reference_image_path = f"reference_signature_{reference_number}.jpg" | |
download_from_drive(file_id, reference_image_path) | |
# Extract signature from the document | |
cropped_signature = extract_signature(document_image) | |
if cropped_signature is None: | |
return "Signature extraction failed.", None | |
# Load reference signature | |
reference_img = cv2.imread(reference_image_path) | |
if reference_img is None: | |
return "Error: Could not load the reference image.", None | |
# Compute similarity | |
similarity, details = orb_similarity(cropped_signature, reference_img) | |
similarity_percentage = round(similarity * 100, 2) | |
# Classification based on similarity score | |
if similarity_percentage > 55: | |
classification = "β Matched" | |
elif 40 <= similarity_percentage <= 55: | |
classification = "β οΈ Manual Check Recommended" | |
else: | |
classification = "β Not Matched" | |
# Generate visualization of matches | |
matched_img = None | |
if details is not None: | |
kp1, kp2, good_matches, _ = details | |
matched_img = cv2.drawMatches(cropped_signature, kp1, reference_img, kp2, good_matches, None, flags=2) | |
return f"π Similarity Score: {similarity_percentage}%\nπ {classification}", matched_img | |
import gradio as gr | |
# β Ensure you have the correct function for signature verification | |
def verify_signature(document_image, policy_number): | |
return f"Processing {document_image} with policy number {policy_number}" | |
# β Corrected Gradio Interface (Removed `theme="compact"`) | |
interface = gr.Interface( | |
fn=verify_signature, | |
inputs=[ | |
gr.Image(type="filepath", label="Upload Document Image"), | |
gr.Number(label="Enter the Policy Number", precision=0) | |
], | |
outputs=[ | |
gr.Textbox(label="Verification Result"), | |
gr.Image(label="Signature Matching Visualization") | |
], | |
title="ποΈ Signature Verification System", | |
description="Upload a document with a signature, select a policy number, and verify its authenticity." | |
) | |
# β Corrected `launch()` command (Removed `enable_queue`) | |
interface.launch(server_name="0.0.0.0", server_port=7860,show_api=True) | |