Spaces:
Runtime error
Runtime error
0.26 loading models on start
Browse files
app.py
CHANGED
|
@@ -24,11 +24,33 @@ models_available = [
|
|
| 24 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 25 |
]
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
device = "cuda"
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
def apply_chat_template(messages, add_generation_prompt=False):
|
| 34 |
"""
|
|
@@ -54,39 +76,6 @@ def apply_chat_template(messages, add_generation_prompt=False):
|
|
| 54 |
|
| 55 |
return pharia_template
|
| 56 |
|
| 57 |
-
@spaces.GPU()
|
| 58 |
-
def load_model_a(model_id):
|
| 59 |
-
global tokenizer_a, model_a, model_id_a
|
| 60 |
-
try:
|
| 61 |
-
model_id_a = model_id # need to access model_id with tokenizer
|
| 62 |
-
tokenizer_a = AutoTokenizer.from_pretrained(model_id)
|
| 63 |
-
model_a = AutoModelForCausalLM.from_pretrained(
|
| 64 |
-
model_id,
|
| 65 |
-
torch_dtype=torch.float16,
|
| 66 |
-
device_map="auto",
|
| 67 |
-
trust_remote_code=True,
|
| 68 |
-
)
|
| 69 |
-
model_a.tie_weights()
|
| 70 |
-
except Exception as e:
|
| 71 |
-
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
|
| 72 |
-
return gr.update(label=model_id)
|
| 73 |
-
|
| 74 |
-
@spaces.GPU()
|
| 75 |
-
def load_model_b(model_id):
|
| 76 |
-
global tokenizer_b, model_b, model_id_b
|
| 77 |
-
try:
|
| 78 |
-
model_id_b = model_id
|
| 79 |
-
tokenizer_b = AutoTokenizer.from_pretrained(model_id)
|
| 80 |
-
model_b = AutoModelForCausalLM.from_pretrained(
|
| 81 |
-
model_id,
|
| 82 |
-
torch_dtype=torch.float16,
|
| 83 |
-
device_map="auto",
|
| 84 |
-
trust_remote_code=True,
|
| 85 |
-
)
|
| 86 |
-
model_b.tie_weights()
|
| 87 |
-
except Exception as e:
|
| 88 |
-
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
|
| 89 |
-
return gr.update(label=model_id)
|
| 90 |
|
| 91 |
@spaces.GPU()
|
| 92 |
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):
|
|
@@ -208,10 +197,8 @@ with gr.Blocks() as demo:
|
|
| 208 |
system_prompt = gr.Textbox(lines=1, label="System Prompt", value="You are a helpful chatbot. Write a Nike style ad headline about the shame of being second best", show_copy_button=True)
|
| 209 |
with gr.Row(variant="panel"):
|
| 210 |
with gr.Column():
|
| 211 |
-
model_dropdown_a = gr.Dropdown(label="Model A", choices=models_available, value=None)
|
| 212 |
chatbot_a = gr.Chatbot(label="Model A", rtl=True, likeable=True, show_copy_button=True, height=500)
|
| 213 |
with gr.Column():
|
| 214 |
-
model_dropdown_b = gr.Dropdown(label="Model B", choices=models_available, value=None)
|
| 215 |
chatbot_b = gr.Chatbot(label="Model B", rtl=True, likeable=True, show_copy_button=True, height=500)
|
| 216 |
with gr.Row(variant="panel"):
|
| 217 |
with gr.Column(scale=1):
|
|
@@ -224,9 +211,6 @@ with gr.Blocks() as demo:
|
|
| 224 |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="Top-p", step=0.01)
|
| 225 |
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
|
| 226 |
|
| 227 |
-
model_dropdown_a.change(load_model_a, inputs=[model_dropdown_a], outputs=[chatbot_a])
|
| 228 |
-
model_dropdown_b.change(load_model_b, inputs=[model_dropdown_b], outputs=[chatbot_b])
|
| 229 |
-
|
| 230 |
input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
| 231 |
submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
| 232 |
clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
|
|
|
|
| 24 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 25 |
]
|
| 26 |
|
| 27 |
+
model_a_info = {"id": "NousResearch/Meta-Llama-3.1-8B-Instruct",
|
| 28 |
+
"name": "Meta Llama 3.1 8B Instruct"}
|
| 29 |
+
model_b_info = {"id": "mistralai/Mistral-7B-Instruct-v0.3",
|
| 30 |
+
"name": "Mistral 7B Instruct v0.3"}
|
| 31 |
+
|
| 32 |
device = "cuda"
|
| 33 |
|
| 34 |
+
try:
|
| 35 |
+
tokenizer_a = AutoTokenizer.from_pretrained(model_a_info['id'])
|
| 36 |
+
model_a = AutoModelForCausalLM.from_pretrained(
|
| 37 |
+
model_a_info['id'],
|
| 38 |
+
torch_dtype=torch.float16,
|
| 39 |
+
device_map="auto",
|
| 40 |
+
trust_remote_code=True,
|
| 41 |
+
)
|
| 42 |
+
#model_a.tie_weights()
|
| 43 |
+
tokenizer_b = AutoTokenizer.from_pretrained(model_b_info['id'])
|
| 44 |
+
model_b = AutoModelForCausalLM.from_pretrained(
|
| 45 |
+
model_b_info['id'],
|
| 46 |
+
torch_dtype=torch.float16,
|
| 47 |
+
device_map="auto",
|
| 48 |
+
trust_remote_code=True,
|
| 49 |
+
)
|
| 50 |
+
model_b.tie_weights()
|
| 51 |
+
except Exception as e:
|
| 52 |
+
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
|
| 53 |
+
|
| 54 |
|
| 55 |
def apply_chat_template(messages, add_generation_prompt=False):
|
| 56 |
"""
|
|
|
|
| 76 |
|
| 77 |
return pharia_template
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
@spaces.GPU()
|
| 81 |
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):
|
|
|
|
| 197 |
system_prompt = gr.Textbox(lines=1, label="System Prompt", value="You are a helpful chatbot. Write a Nike style ad headline about the shame of being second best", show_copy_button=True)
|
| 198 |
with gr.Row(variant="panel"):
|
| 199 |
with gr.Column():
|
|
|
|
| 200 |
chatbot_a = gr.Chatbot(label="Model A", rtl=True, likeable=True, show_copy_button=True, height=500)
|
| 201 |
with gr.Column():
|
|
|
|
| 202 |
chatbot_b = gr.Chatbot(label="Model B", rtl=True, likeable=True, show_copy_button=True, height=500)
|
| 203 |
with gr.Row(variant="panel"):
|
| 204 |
with gr.Column(scale=1):
|
|
|
|
| 211 |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="Top-p", step=0.01)
|
| 212 |
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
|
| 213 |
|
|
|
|
|
|
|
|
|
|
| 214 |
input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
| 215 |
submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
| 216 |
clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
|