bot-royale / app.py
5to9's picture
0.50 set pad_token manually
c7efb5e
raw
history blame
12 kB
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
import gradio as gr
import logging
from huggingface_hub import login
import os
import traceback
from threading import Thread
from random import shuffle, choice
logging.basicConfig(level=logging.DEBUG)
SPACER = '\n' + '*' * 40 + '\n'
HF_TOKEN = os.environ.get("HF_TOKEN", None)
login(token=HF_TOKEN)
system_prompts = {
"English": "You are a helpful chatbot that answers user input in a concise and witty way.",
"German": "Du bist ein hilfreicher Chatbot, der Usereingaben knapp und originell beantwortet.",
"French": "Tu es un chatbot utile qui répond aux questions des utilisateurs de manière concise et originale.",
"Spanish": "Eres un chatbot servicial que responde a las entradas de los usuarios de forma concisa y original."
}
htmL_info = "<center><h1>Pharia Battle Royale</h1><p>Let the games begin: In this bot arena, the Pharia 1 model competes against a challenger. Try a prompt in a language you want to explore. Set the parameters and vote for the best answers. After casting your vote, the bots reveal their identity. Inputs, outputs and votes are logged anonymously for further insight.</p></center>"
model_info = [{"id": "Aleph-Alpha/Pharia-1-LLM-7B-control-hf",
"name": "Pharia 1 LLM 7B control hf"}]
challenger_models = [{"id": "NousResearch/Meta-Llama-3.1-8B-Instruct",
"name": "Meta Llama 3.1 8B Instruct"},
{"id": "mistralai/Mistral-7B-Instruct-v0.3",
"name": "Mistral 7B Instruct v0.3"}]
challenger_model = choice(challenger_models)
model_info.append(challenger_model)
shuffle(model_info)
device = "cuda"
try:
tokenizer_a = AutoTokenizer.from_pretrained(model_info[0]['id'])
model_a = AutoModelForCausalLM.from_pretrained(
model_info[0]['id'],
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
tokenizer_b = AutoTokenizer.from_pretrained(model_info[1]['id'])
model_b = AutoModelForCausalLM.from_pretrained(
model_info[1]['id'],
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
def apply_pharia_template(messages, add_generation_prompt=False):
"""Chat template not defined in Pharia model configs.
Adds chat template for Pharia. Expects a list of messages.
add_generation_prompt:bool extends tmplate for generation.
"""
pharia_template = """<|begin_of_text|>"""
role_map = {
"system": "<|start_header_id|>system<|end_header_id|>\n",
"user": "<|start_header_id|>user<|end_header_id|>\n",
"assistant": "<|start_header_id|>assistant<|end_header_id|>\n",
}
for message in messages:
role = message["role"]
content = message["content"]
pharia_template += role_map.get(role, "") + content + "<|eot_id|>\n"
if add_generation_prompt:
pharia_template += "<|start_header_id|>assistant<|end_header_id|>\n"
return pharia_template
@spaces.GPU()
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):
try:
text_streamer_a = TextIteratorStreamer(tokenizer_a, skip_prompt=True)
text_streamer_b = TextIteratorStreamer(tokenizer_b, skip_prompt=True)
system_prompt_list = [{"role": "system", "content": system_prompt}] if system_prompt else []
input_text_list = [{"role": "user", "content": input_text}]
chat_history_a = []
for user, assistant in chatbot_a:
chat_history_a.append({"role": "user", "content": user})
chat_history_a.append({"role": "assistant", "content": assistant})
chat_history_b = []
for user, assistant in chatbot_b:
chat_history_b.append({"role": "user", "content": user})
chat_history_b.append({"role": "assistant", "content": assistant})
new_messages_a = system_prompt_list + chat_history_a + input_text_list
new_messages_b = system_prompt_list + chat_history_b + input_text_list
if "Pharia" in model_info[0]['id']:
formatted_conversation = apply_pharia_template(messages=new_messages_a, add_generation_prompt=True)
tokenized = tokenizer_a(formatted_conversation, return_tensors="pt").to(device)
logging.debug(tokenized) #attention_mask
input_ids_a = tokenized.input_ids
tokenizer_a.eos_token = "<|endoftext|>" # not set für Pharia
tokenizer_a.pad_token = "<|padding|>" # not set für Pharia
else:
input_ids_a = tokenizer_a.apply_chat_template(
new_messages_a,
add_generation_prompt=True,
dtype=torch.float16,
return_tensors="pt"
).to(device)
if "Pharia" in model_info[1]['id']:
formatted_conversation = apply_pharia_template(messages=new_messages_a, add_generation_prompt=True)
tokenized = tokenizer_b(formatted_conversation, return_tensors="pt").to(device)
logging.debug(tokenized)
input_ids_b = tokenized.input_ids
logging.debug(f'tokenizer_b.pad_token is {tokenizer_b.pad_token}')
tokenizer_b.eos_token = "<|endoftext|>" # not set für Pharia
tokenizer_b.pad_token = "<|padding|>" # not set für Pharia
else:
input_ids_b = tokenizer_b.apply_chat_template(
new_messages_b,
add_generation_prompt=True,
dtype=torch.float16,
return_tensors="pt"
).to(device)
generation_kwargs_a = dict(
input_ids=input_ids_a,
streamer=text_streamer_a,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer_a.eos_token_id,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
generation_kwargs_b = dict(
input_ids=input_ids_b,
streamer=text_streamer_b,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer_b.eos_token_id,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
thread_a = Thread(target=model_a.generate, kwargs=generation_kwargs_a)
thread_b = Thread(target=model_b.generate, kwargs=generation_kwargs_b)
thread_a.start()
thread_b.start()
chatbot_a.append([input_text, ""])
chatbot_b.append([input_text, ""])
finished_a = False
finished_b = False
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
while not (finished_a and finished_b):
if not finished_a:
try:
text_a = next(text_streamer_a)
if tokenizer_a.eos_token in text_a:
eot_location = text_a.find(tokenizer_a.eos_token)
text_a = text_a[:eot_location]
finished_a = True
chatbot_a[-1][-1] += text_a
yield chatbot_a, chatbot_b
except StopIteration:
finished_a = True
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
if not finished_b:
try:
text_b = next(text_streamer_b)
if tokenizer_b.eos_token in text_b:
eot_location = text_b.find(tokenizer_b.eos_token)
text_b = text_b[:eot_location]
finished_b = True
chatbot_b[-1][-1] += text_b
yield chatbot_a, chatbot_b
except StopIteration:
finished_b = True
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
return chatbot_a, chatbot_b
def clear():
return [], []
def reveal_bot(selection, chatbot_a, chatbot_b):
if selection == "Bot A kicks ass!":
chatbot_a.append(["🏆", f"Thanks, man. I am {model_info[0]['name']}"])
chatbot_b.append(["💩", f"Pffff … I am {model_info[1]['name']}"])
elif selection == "Bot B crushes it!":
chatbot_a.append(["🤡", f"Rigged … I am {model_info[0]['name']}"])
chatbot_b.append(["🥇", f"Well deserved! I am {model_info[1]['name']}"])
else:
chatbot_a.append(["🤝", f"Lame … I am {model_info[0]['name']}"])
chatbot_b.append(["🤝", f"Dunno. I am {model_info[1]['name']}"])
return chatbot_a, chatbot_b
with gr.Blocks() as demo:
try:
with gr.Column():
gr.HTML(htmL_info)
with gr.Row(variant="compact"):
with gr.Column(scale=0):
language_dropdown = gr.Dropdown(
choices=["English", "German", "French", "Spanish"],
label="Select Language for System Prompt",
value="English"
)
with gr.Column():
system_prompt = gr.Textbox(
lines=1,
label="System Prompt",
value=system_prompts["English"],
show_copy_button=True
)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
submit_btn = gr.Button(value="Generate", variant="primary")
clear_btn = gr.Button(value="Clear", variant="secondary")
input_text = gr.Textbox(lines=1, label="Prompt", value="Write a Nike style ad headline about the shame of being second best.", scale=3, show_copy_button=True)
with gr.Row(variant="panel"):
with gr.Column():
chatbot_a = gr.Chatbot(label="Model A", show_copy_button=True, height=500)
with gr.Column():
chatbot_b = gr.Chatbot(label="Model B", show_copy_button=True, height=500)
with gr.Row(variant="panel"):
better_bot = gr.Radio(["Bot A kicks ass!", "Bot B crushes it!", "It's a draw."], label="Rate the output!")
with gr.Accordion(label="Generation Configurations", open=False):
max_new_tokens = gr.Slider(minimum=128, maximum=4096, value=512, label="Max new tokens", step=128)
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature", step=0.01)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="Top_p", step=0.01)
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
language_dropdown.change(
lambda lang: system_prompts[lang],
inputs=[language_dropdown],
outputs=[system_prompt]
)
better_bot.select(reveal_bot, inputs=[better_bot, chatbot_a, chatbot_b], outputs=[chatbot_a, chatbot_b])
input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
if __name__ == "__main__":
demo.queue().launch()