bot-royale / app.py
5to9's picture
0.6 defining chat template for pharia
c6e8ef5
raw
history blame
9.97 kB
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
import gradio as gr
import logging
from huggingface_hub import login
import os
from threading import Thread
import subprocess
subprocess.run('pip install -U flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
logging.basicConfig(level=logging.DEBUG)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
login(token=HF_TOKEN)
models_available = [
"Aleph-Alpha/Pharia-1-LLM-7B-control-hf",
"mistralai/Mistral-7B-Instruct-v0.3",
]
tokenizer_a, model_a = None, None
tokenizer_b, model_b = None, None
torch_dtype = torch.bfloat16
attn_implementation = "flash_attention_2"
def apply_chat_template(messages, add_generation_prompt=False):
"""
Function to apply the chat template manually for each message in a list.
messages: List of dictionaries, each containing a 'role' and 'content'.
"""
pharia_template = """<|begin_of_text|>"""
role_map = {
"system": "<|start_header_id|>system<|end_header_id|>\n",
"user": "<|start_header_id|>user<|end_header_id|>\n",
"assistant": "<|start_header_id|>assistant<|end_header_id|>\n",
}
# Iterate through the messages and apply the template for each role
for message in messages:
role = message["role"]
content = message["content"]
pharia_template += role_map.get(role, "") + content + "<|eot_id|>\n"
# Add the assistant generation prompt if required
if add_generation_prompt:
pharia_template += "<|start_header_id|>assistant<|end_header_id|>\n"
return pharia_template
def load_model_a(model_id):
global tokenizer_a, model_a, model_id_a
model_id_a = model_id # need to access model_id with tokenizer
tokenizer_a = AutoTokenizer.from_pretrained(model_id)
logging.debug(f"model A: {tokenizer_a.eos_token}")
try:
model_a = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
device_map="auto",
attn_implementation=attn_implementation,
trust_remote_code=True,
).eval()
except Exception as e:
logging.debug(f"Using default attention implementation in {model_id}")
logging.debug(f"Error: {e}")
model_a = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
device_map="auto",
trust_remote_code=True,
).eval()
model_a.tie_weights()
return gr.update(label=model_id)
def load_model_b(model_id):
global tokenizer_b, model_b, model_id_b
model_id_b = model_id
tokenizer_b = AutoTokenizer.from_pretrained(model_id)
logging.debug(f"model B: {tokenizer_b.eos_token}")
try:
model_b = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
device_map="auto",
attn_implementation=attn_implementation,
trust_remote_code=True,
).eval()
except Exception as e:
logging.debug(f"Error: {e}")
logging.debug(f"Using default attention implementation in {model_id}")
model_b = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
device_map="auto",
trust_remote_code=True,
).eval()
model_b.tie_weights()
return gr.update(label=model_id)
@spaces.GPU()
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):
text_streamer_a = TextIteratorStreamer(tokenizer_a, skip_prompt=True)
text_streamer_b = TextIteratorStreamer(tokenizer_b, skip_prompt=True)
system_prompt_list = [{"role": "system", "content": system_prompt}] if system_prompt else []
input_text_list = [{"role": "user", "content": input_text}]
chat_history_a = []
for user, assistant in chatbot_a:
chat_history_a.append({"role": "user", "content": user})
chat_history_a.append({"role": "assistant", "content": assistant})
chat_history_b = []
for user, assistant in chatbot_b:
chat_history_b.append({"role": "user", "content": user})
chat_history_b.append({"role": "assistant", "content": assistant})
new_messages_a = system_prompt_list + chat_history_a + input_text_list
new_messages_b = system_prompt_list + chat_history_b + input_text_list
if "pharia" in model_id_a:
logging.debug("model a is pharia based, applying own template")
formatted_message_a = apply_chat_template(new_messages_a, add_generation_prompt=True)
input_ids_a = tokenizer_b(formatted_message_a, return_tensors="pt").input_ids.to(model_a.device)
else:
input_ids_a = tokenizer_a.apply_chat_template(
new_messages_a,
add_generation_prompt=True,
return_tensors="pt"
).to(model_a.device)
if "pharia" in model_id_b:
logging.debug("model b is pharia based, applying own template")
formatted_message_b = apply_chat_template(new_messages_a, add_generation_prompt=True)
input_ids_b = tokenizer_b(formatted_message_b, return_tensors="pt").input_ids.to(model_a.device)
else:
input_ids_b = tokenizer_b.apply_chat_template(
new_messages_b,
add_generation_prompt=True,
return_tensors="pt"
).to(model_b.device)
generation_kwargs_a = dict(
input_ids=input_ids_a,
streamer=text_streamer_a,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer_a.eos_token_id,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
generation_kwargs_b = dict(
input_ids=input_ids_b,
streamer=text_streamer_b,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer_b.eos_token_id,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
thread_a = Thread(target=model_a.generate, kwargs=generation_kwargs_a)
thread_b = Thread(target=model_b.generate, kwargs=generation_kwargs_b)
thread_a.start()
thread_b.start()
chatbot_a.append([input_text, ""])
chatbot_b.append([input_text, ""])
finished_a = False
finished_b = False
while not (finished_a and finished_b):
if not finished_a:
try:
text_a = next(text_streamer_a)
if tokenizer_a.eos_token in text_a:
eot_location = text_a.find(tokenizer_a.eos_token)
text_a = text_a[:eot_location]
finished_a = True
chatbot_a[-1][-1] += text_a
yield chatbot_a, chatbot_b
except StopIteration:
finished_a = True
if not finished_b:
try:
text_b = next(text_streamer_b)
if tokenizer_b.eos_token in text_b:
eot_location = text_b.find(tokenizer_b.eos_token)
text_b = text_b[:eot_location]
finished_b = True
chatbot_b[-1][-1] += text_b
yield chatbot_a, chatbot_b
except StopIteration:
finished_b = True
return chatbot_a, chatbot_b
def clear():
return [], []
arena_notes = """## Important Notes:
- Sometimes an error may occur when generating the response, in this case, please try again.
"""
with gr.Blocks() as demo:
with gr.Column():
gr.HTML("<center><h1>🤖le Royale</h1></center>")
gr.Markdown(arena_notes)
system_prompt = gr.Textbox(lines=1, label="System Prompt", value="You are a helpful chatbot. Write a Nike style ad headline about the shame of being second best", show_copy_button=True)
with gr.Row(variant="panel"):
with gr.Column():
model_dropdown_a = gr.Dropdown(label="Model A", choices=models_available, value=None)
chatbot_a = gr.Chatbot(label="Model A", rtl=True, likeable=True, show_copy_button=True, height=500)
with gr.Column():
model_dropdown_b = gr.Dropdown(label="Model B", choices=models_available, value=None)
chatbot_b = gr.Chatbot(label="Model B", rtl=True, likeable=True, show_copy_button=True, height=500)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
submit_btn = gr.Button(value="Generate", variant="primary")
clear_btn = gr.Button(value="Clear", variant="secondary")
input_text = gr.Textbox(lines=1, label="Output", value="", scale=3, show_copy_button=True)
with gr.Accordion(label="Generation Configurations", open=False):
max_new_tokens = gr.Slider(minimum=128, maximum=4096, value=2048, label="Max New Tokens", step=128)
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature", step=0.01)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="Top-p", step=0.01)
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
model_dropdown_a.change(load_model_a, inputs=[model_dropdown_a], outputs=[chatbot_a])
model_dropdown_b.change(load_model_b, inputs=[model_dropdown_b], outputs=[chatbot_b])
input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
if __name__ == "__main__":
demo.queue().launch()