Spaces:
Sleeping
Sleeping
Update predict.py
Browse files- predict.py +5 -5
predict.py
CHANGED
|
@@ -8,7 +8,7 @@ import glob
|
|
| 8 |
import torch
|
| 9 |
from skimage import img_as_ubyte
|
| 10 |
from PIL import Image
|
| 11 |
-
from model.
|
| 12 |
from main_test_SRMNet import save_img, setup
|
| 13 |
import torchvision.transforms.functional as TF
|
| 14 |
import torch.nn.functional as F
|
|
@@ -16,7 +16,7 @@ import torch.nn.functional as F
|
|
| 16 |
|
| 17 |
class Predictor(cog.Predictor):
|
| 18 |
def setup(self):
|
| 19 |
-
model_dir = 'experiments/pretrained_models/
|
| 20 |
|
| 21 |
parser = argparse.ArgumentParser(description='Demo Image Denoising')
|
| 22 |
parser.add_argument('--input_dir', default='./test/', type=str, help='Input images')
|
|
@@ -38,7 +38,7 @@ class Predictor(cog.Predictor):
|
|
| 38 |
shutil.copy(str(image), input_path)
|
| 39 |
|
| 40 |
# Load corresponding models architecture and weights
|
| 41 |
-
model =
|
| 42 |
model.eval()
|
| 43 |
model = model.to(self.device)
|
| 44 |
|
|
@@ -46,7 +46,7 @@ class Predictor(cog.Predictor):
|
|
| 46 |
os.makedirs(save_dir, exist_ok=True)
|
| 47 |
|
| 48 |
out_path = Path(tempfile.mkdtemp()) / "out.png"
|
| 49 |
-
mul =
|
| 50 |
for file_ in sorted(glob.glob(os.path.join(folder, '*.PNG'))):
|
| 51 |
img = Image.open(file_).convert('RGB')
|
| 52 |
input_ = TF.to_tensor(img).unsqueeze(0).cuda()
|
|
@@ -60,7 +60,7 @@ class Predictor(cog.Predictor):
|
|
| 60 |
with torch.no_grad():
|
| 61 |
restored = model(input_)
|
| 62 |
|
| 63 |
-
restored = torch.clamp(restored, 0, 1)
|
| 64 |
restored = restored[:, :, :h, :w]
|
| 65 |
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
|
| 66 |
restored = img_as_ubyte(restored[0])
|
|
|
|
| 8 |
import torch
|
| 9 |
from skimage import img_as_ubyte
|
| 10 |
from PIL import Image
|
| 11 |
+
from model.CMFNet import CMFNet
|
| 12 |
from main_test_SRMNet import save_img, setup
|
| 13 |
import torchvision.transforms.functional as TF
|
| 14 |
import torch.nn.functional as F
|
|
|
|
| 16 |
|
| 17 |
class Predictor(cog.Predictor):
|
| 18 |
def setup(self):
|
| 19 |
+
model_dir = 'experiments/pretrained_models/deraindrop_model.pth'
|
| 20 |
|
| 21 |
parser = argparse.ArgumentParser(description='Demo Image Denoising')
|
| 22 |
parser.add_argument('--input_dir', default='./test/', type=str, help='Input images')
|
|
|
|
| 38 |
shutil.copy(str(image), input_path)
|
| 39 |
|
| 40 |
# Load corresponding models architecture and weights
|
| 41 |
+
model = CMFNet()
|
| 42 |
model.eval()
|
| 43 |
model = model.to(self.device)
|
| 44 |
|
|
|
|
| 46 |
os.makedirs(save_dir, exist_ok=True)
|
| 47 |
|
| 48 |
out_path = Path(tempfile.mkdtemp()) / "out.png"
|
| 49 |
+
mul = 8
|
| 50 |
for file_ in sorted(glob.glob(os.path.join(folder, '*.PNG'))):
|
| 51 |
img = Image.open(file_).convert('RGB')
|
| 52 |
input_ = TF.to_tensor(img).unsqueeze(0).cuda()
|
|
|
|
| 60 |
with torch.no_grad():
|
| 61 |
restored = model(input_)
|
| 62 |
|
| 63 |
+
restored = torch.clamp(restored[0], 0, 1)
|
| 64 |
restored = restored[:, :, :h, :w]
|
| 65 |
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
|
| 66 |
restored = img_as_ubyte(restored[0])
|