Spaces:
Running
Running
Delete predict.py
Browse files- predict.py +0 -82
predict.py
DELETED
@@ -1,82 +0,0 @@
|
|
1 |
-
import cog
|
2 |
-
import tempfile
|
3 |
-
from pathlib import Path
|
4 |
-
import argparse
|
5 |
-
import shutil
|
6 |
-
import os
|
7 |
-
import glob
|
8 |
-
import torch
|
9 |
-
from skimage import img_as_ubyte
|
10 |
-
from PIL import Image
|
11 |
-
from model.CMFNet import CMFNet
|
12 |
-
from main_test_SRMNet import save_img, setup
|
13 |
-
import torchvision.transforms.functional as TF
|
14 |
-
import torch.nn.functional as F
|
15 |
-
|
16 |
-
|
17 |
-
class Predictor(cog.Predictor):
|
18 |
-
def setup(self):
|
19 |
-
model_dir = 'experiments/pretrained_models/deraindrop_model.pth'
|
20 |
-
|
21 |
-
parser = argparse.ArgumentParser(description='Demo Image Denoising')
|
22 |
-
parser.add_argument('--input_dir', default='./test/', type=str, help='Input images')
|
23 |
-
parser.add_argument('--result_dir', default='./result/', type=str, help='Directory for results')
|
24 |
-
parser.add_argument('--weights',
|
25 |
-
default='./checkpoints/SRMNet_real_denoise/models/model_bestPSNR.pth', type=str,
|
26 |
-
help='Path to weights')
|
27 |
-
|
28 |
-
self.args = parser.parse_args()
|
29 |
-
|
30 |
-
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
31 |
-
|
32 |
-
@cog.input("image", type=Path, help="input image")
|
33 |
-
def predict(self, image):
|
34 |
-
# set input folder
|
35 |
-
input_dir = 'input_cog_temp'
|
36 |
-
os.makedirs(input_dir, exist_ok=True)
|
37 |
-
input_path = os.path.join(input_dir, os.path.basename(image))
|
38 |
-
shutil.copy(str(image), input_path)
|
39 |
-
|
40 |
-
# Load corresponding models architecture and weights
|
41 |
-
model = CMFNet()
|
42 |
-
model.eval()
|
43 |
-
model = model.to(self.device)
|
44 |
-
|
45 |
-
folder, save_dir = setup(self.args)
|
46 |
-
os.makedirs(save_dir, exist_ok=True)
|
47 |
-
|
48 |
-
out_path = Path(tempfile.mkdtemp()) / "out.png"
|
49 |
-
mul = 8
|
50 |
-
for file_ in sorted(glob.glob(os.path.join(folder, '*.PNG'))):
|
51 |
-
img = Image.open(file_).convert('RGB')
|
52 |
-
input_ = TF.to_tensor(img).unsqueeze(0).cuda()
|
53 |
-
|
54 |
-
# Pad the input if not_multiple_of 8
|
55 |
-
h, w = input_.shape[2], input_.shape[3]
|
56 |
-
H, W = ((h + mul) // mul) * mul, ((w + mul) // mul) * mul
|
57 |
-
padh = H - h if h % mul != 0 else 0
|
58 |
-
padw = W - w if w % mul != 0 else 0
|
59 |
-
input_ = F.pad(input_, (0, padw, 0, padh), 'reflect')
|
60 |
-
with torch.no_grad():
|
61 |
-
restored = model(input_)
|
62 |
-
|
63 |
-
restored = torch.clamp(restored[0], 0, 1)
|
64 |
-
restored = restored[:, :, :h, :w]
|
65 |
-
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
|
66 |
-
restored = img_as_ubyte(restored[0])
|
67 |
-
|
68 |
-
save_img(str(out_path), restored)
|
69 |
-
clean_folder(input_dir)
|
70 |
-
return out_path
|
71 |
-
|
72 |
-
|
73 |
-
def clean_folder(folder):
|
74 |
-
for filename in os.listdir(folder):
|
75 |
-
file_path = os.path.join(folder, filename)
|
76 |
-
try:
|
77 |
-
if os.path.isfile(file_path) or os.path.islink(file_path):
|
78 |
-
os.unlink(file_path)
|
79 |
-
elif os.path.isdir(file_path):
|
80 |
-
shutil.rmtree(file_path)
|
81 |
-
except Exception as e:
|
82 |
-
print('Failed to delete %s. Reason: %s' % (file_path, e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|