File size: 11,724 Bytes
6bde7ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import json
import torch
from torchvision import transforms
from open_clip import create_model, get_tokenizer
import torch.nn.functional as F
import numpy as np
import collections
import heapq
import PIL.Image
from huggingface_hub import hf_hub_download
from typing import Union, List
from enum import Enum


HF_DATAFILE_REPO = "imageomics/bioclip-demo"
HF_DATAFILE_REPO_TYPE = "space"
PRED_FILENAME_KEY = "file_name"
PRED_CLASSICATION_KEY = "classification"
PRED_SCORE_KEY = "score"

OPENA_AI_IMAGENET_TEMPLATE = [
    lambda c: f"a bad photo of a {c}.",
    lambda c: f"a photo of many {c}.",
    lambda c: f"a sculpture of a {c}.",
    lambda c: f"a photo of the hard to see {c}.",
    lambda c: f"a low resolution photo of the {c}.",
    lambda c: f"a rendering of a {c}.",
    lambda c: f"graffiti of a {c}.",
    lambda c: f"a bad photo of the {c}.",
    lambda c: f"a cropped photo of the {c}.",
    lambda c: f"a tattoo of a {c}.",
    lambda c: f"the embroidered {c}.",
    lambda c: f"a photo of a hard to see {c}.",
    lambda c: f"a bright photo of a {c}.",
    lambda c: f"a photo of a clean {c}.",
    lambda c: f"a photo of a dirty {c}.",
    lambda c: f"a dark photo of the {c}.",
    lambda c: f"a drawing of a {c}.",
    lambda c: f"a photo of my {c}.",
    lambda c: f"the plastic {c}.",
    lambda c: f"a photo of the cool {c}.",
    lambda c: f"a close-up photo of a {c}.",
    lambda c: f"a black and white photo of the {c}.",
    lambda c: f"a painting of the {c}.",
    lambda c: f"a painting of a {c}.",
    lambda c: f"a pixelated photo of the {c}.",
    lambda c: f"a sculpture of the {c}.",
    lambda c: f"a bright photo of the {c}.",
    lambda c: f"a cropped photo of a {c}.",
    lambda c: f"a plastic {c}.",
    lambda c: f"a photo of the dirty {c}.",
    lambda c: f"a jpeg corrupted photo of a {c}.",
    lambda c: f"a blurry photo of the {c}.",
    lambda c: f"a photo of the {c}.",
    lambda c: f"a good photo of the {c}.",
    lambda c: f"a rendering of the {c}.",
    lambda c: f"a {c} in a video game.",
    lambda c: f"a photo of one {c}.",
    lambda c: f"a doodle of a {c}.",
    lambda c: f"a close-up photo of the {c}.",
    lambda c: f"a photo of a {c}.",
    lambda c: f"the origami {c}.",
    lambda c: f"the {c} in a video game.",
    lambda c: f"a sketch of a {c}.",
    lambda c: f"a doodle of the {c}.",
    lambda c: f"a origami {c}.",
    lambda c: f"a low resolution photo of a {c}.",
    lambda c: f"the toy {c}.",
    lambda c: f"a rendition of the {c}.",
    lambda c: f"a photo of the clean {c}.",
    lambda c: f"a photo of a large {c}.",
    lambda c: f"a rendition of a {c}.",
    lambda c: f"a photo of a nice {c}.",
    lambda c: f"a photo of a weird {c}.",
    lambda c: f"a blurry photo of a {c}.",
    lambda c: f"a cartoon {c}.",
    lambda c: f"art of a {c}.",
    lambda c: f"a sketch of the {c}.",
    lambda c: f"a embroidered {c}.",
    lambda c: f"a pixelated photo of a {c}.",
    lambda c: f"itap of the {c}.",
    lambda c: f"a jpeg corrupted photo of the {c}.",
    lambda c: f"a good photo of a {c}.",
    lambda c: f"a plushie {c}.",
    lambda c: f"a photo of the nice {c}.",
    lambda c: f"a photo of the small {c}.",
    lambda c: f"a photo of the weird {c}.",
    lambda c: f"the cartoon {c}.",
    lambda c: f"art of the {c}.",
    lambda c: f"a drawing of the {c}.",
    lambda c: f"a photo of the large {c}.",
    lambda c: f"a black and white photo of a {c}.",
    lambda c: f"the plushie {c}.",
    lambda c: f"a dark photo of a {c}.",
    lambda c: f"itap of a {c}.",
    lambda c: f"graffiti of the {c}.",
    lambda c: f"a toy {c}.",
    lambda c: f"itap of my {c}.",
    lambda c: f"a photo of a cool {c}.",
    lambda c: f"a photo of a small {c}.",
    lambda c: f"a tattoo of the {c}.",
]


def get_cached_datafile(filename:str):
    return hf_hub_download(repo_id=HF_DATAFILE_REPO, filename=filename, repo_type=HF_DATAFILE_REPO_TYPE)


def get_txt_emb():
    txt_emb_npy = get_cached_datafile("txt_emb_species.npy")
    return torch.from_numpy(np.load(txt_emb_npy))


def get_txt_names():
    txt_names_json = get_cached_datafile("txt_emb_species.json")
    with open(txt_names_json) as fd:
        txt_names = json.load(fd)
    return txt_names


preprocess_img = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Resize((224, 224), antialias=True),
        transforms.Normalize(
            mean=(0.48145466, 0.4578275, 0.40821073),
            std=(0.26862954, 0.26130258, 0.27577711),
        ),
    ]
)

class Rank(Enum):
    KINGDOM = 0
    PHYLUM = 1
    CLASS = 2
    ORDER = 3
    FAMILY = 4
    GENUS = 5
    SPECIES = 6

    def get_label(self):
        return self.name.lower()


# The datafile of names ('txt_emb_species.json') contains species epithet.
# To create a label for species we concatenate the genus and species epithet.
SPECIES_LABEL = Rank.SPECIES.get_label()
SPECIES_EPITHET_LABEL = "species_epithet"
COMMON_NAME_LABEL = "common_name"


def create_bioclip_model(model_str="hf-hub:imageomics/bioclip", device="cuda"):
    model = create_model(model_str, output_dict=True, require_pretrained=True)
    model = model.to(device)
    return torch.compile(model)


def create_bioclip_tokenizer(tokenizer_str="ViT-B-16"):
    return get_tokenizer(tokenizer_str)


class CustomLabelsClassifier(object):
    def __init__(self, device: Union[str, torch.device] = 'cpu'):
        self.device = device
        self.model = create_bioclip_model(device=device)
        self.tokenizer = create_bioclip_tokenizer()

    def get_txt_features(self, classnames):
        all_features = []
        for classname in classnames:
            txts = [template(classname) for template in OPENA_AI_IMAGENET_TEMPLATE]
            txts = self.tokenizer(txts).to(self.device)
            txt_features = self.model.encode_text(txts)
            txt_features = F.normalize(txt_features, dim=-1).mean(dim=0)
            txt_features /= txt_features.norm()
            all_features.append(txt_features)
        all_features = torch.stack(all_features, dim=1)
        return all_features

    @torch.no_grad()
    def predict(self, image_path: str, cls_ary: List[str]) -> dict[str, float]:
        img = PIL.Image.open(image_path)
        classes = [cls.strip() for cls in cls_ary]
        txt_features = self.get_txt_features(classes)

        img = preprocess_img(img).to(self.device)
        img_features = self.model.encode_image(img.unsqueeze(0))
        img_features = F.normalize(img_features, dim=-1)

        logits = (self.model.logit_scale.exp() * img_features @ txt_features).squeeze()
        probs = F.softmax(logits, dim=0).to("cpu").tolist()
        pred_list = []
        for cls, prob in zip(classes, probs):
            pred_list.append({
                PRED_FILENAME_KEY: image_path,
                PRED_CLASSICATION_KEY: cls,
                PRED_SCORE_KEY: prob
            })
        return pred_list


def predict_classifications_from_list(img: Union[PIL.Image.Image, str], cls_ary: List[str], device: Union[str, torch.device] = 'cpu') -> dict[str, float]:
    classifier = CustomLabelsClassifier(device=device)
    return classifier.predict(img, cls_ary)


def get_tol_classification_labels(rank: Rank) -> List[str]:
    names = []
    for i in range(rank.value + 1):
        i_rank = Rank(i)
        if i_rank == Rank.SPECIES:
            names.append(SPECIES_EPITHET_LABEL)
        rank_name = i_rank.name.lower()
        names.append(rank_name)
    if rank == Rank.SPECIES:
        names.append(COMMON_NAME_LABEL)
    return names


def create_classification_dict(names: List[List[str]], rank: Rank) -> dict[str, str]:
    scientific_names = names[0]
    common_name = names[1]
    classification_dict = {}
    for idx, label in enumerate(get_tol_classification_labels(rank=rank)):
        if label == SPECIES_LABEL:
            value = scientific_names[-2] + " " + scientific_names[-1]
        elif label == COMMON_NAME_LABEL:
            value = common_name
        else:
            value = scientific_names[idx]
        classification_dict[label] = value
    return classification_dict


def join_names(classification_dict: dict[str, str]) -> str:
    return " ".join(classification_dict.values())


class TreeOfLifeClassifier(object):
    def __init__(self, device: Union[str, torch.device] = 'cpu'):
        self.device = device
        self.model = create_bioclip_model(device=device)
        self.txt_emb = get_txt_emb().to(device)
        self.txt_names = get_txt_names()

    def encode_image(self, img: PIL.Image.Image) -> torch.Tensor:
        img = preprocess_img(img).to(self.device)
        img_features = self.model.encode_image(img.unsqueeze(0))
        return img_features

    def predict_species(self, img: PIL.Image.Image) -> torch.Tensor:
        img_features = self.encode_image(img)
        img_features = F.normalize(img_features, dim=-1)
        logits = (self.model.logit_scale.exp() * img_features @ self.txt_emb).squeeze()
        probs = F.softmax(logits, dim=0)
        return probs

    def format_species_probs(self, image_path: str, probs: torch.Tensor, k: int = 5) -> List[dict[str, float]]:
        topk = probs.topk(k)
        result = []
        for i, prob in zip(topk.indices, topk.values):
            item = { PRED_FILENAME_KEY: image_path }
            item.update(create_classification_dict(self.txt_names[i], Rank.SPECIES))
            item[PRED_SCORE_KEY] = prob.item()
            result.append(item)
        return result

    def format_grouped_probs(self, image_path: str, probs: torch.Tensor, rank: Rank, min_prob: float = 1e-9, k: int = 5) -> List[dict[str, float]]:
        output = collections.defaultdict(float)
        class_dict_lookup = {}
        name_to_class_dict = {}
        for i in torch.nonzero(probs > min_prob).squeeze():
            classification_dict = create_classification_dict(self.txt_names[i], rank)
            name = join_names(classification_dict)
            class_dict_lookup[name] = classification_dict
            output[name] += probs[i]
            name_to_class_dict[name] = classification_dict
        topk_names = heapq.nlargest(k, output, key=output.get)
        prediction_ary = []
        for name in topk_names:
            item = { PRED_FILENAME_KEY: image_path }
            item.update(name_to_class_dict[name])
            #item.update(class_dict_lookup)
            item[PRED_SCORE_KEY] = output[name].item()
            prediction_ary.append(item)
        return prediction_ary

    @torch.no_grad()
    def predict(self, image_path: str, rank: Rank, min_prob: float = 1e-9, k: int = 5) -> List[dict[str, float]]:
        img = PIL.Image.open(image_path)
        probs = self.predict_species(img)
        if rank == Rank.SPECIES:
            return self.format_species_probs(image_path, probs, k)
        return self.format_grouped_probs(image_path, probs, rank, min_prob, k)


def predict_classification(img: str, rank: Rank, device: Union[str, torch.device] = 'cpu',

                           min_prob: float = 1e-9, k: int = 5) -> dict[str, float]:
    """

    Predicts from the entire tree of life.

    If targeting a higher rank than species, then this function predicts among all

    species, then sums up species-level probabilities for the given rank.

    """
    classifier = TreeOfLifeClassifier(device=device)
    return classifier.predict(img, rank, min_prob, k)