File size: 11,724 Bytes
6bde7ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import json
import torch
from torchvision import transforms
from open_clip import create_model, get_tokenizer
import torch.nn.functional as F
import numpy as np
import collections
import heapq
import PIL.Image
from huggingface_hub import hf_hub_download
from typing import Union, List
from enum import Enum
HF_DATAFILE_REPO = "imageomics/bioclip-demo"
HF_DATAFILE_REPO_TYPE = "space"
PRED_FILENAME_KEY = "file_name"
PRED_CLASSICATION_KEY = "classification"
PRED_SCORE_KEY = "score"
OPENA_AI_IMAGENET_TEMPLATE = [
lambda c: f"a bad photo of a {c}.",
lambda c: f"a photo of many {c}.",
lambda c: f"a sculpture of a {c}.",
lambda c: f"a photo of the hard to see {c}.",
lambda c: f"a low resolution photo of the {c}.",
lambda c: f"a rendering of a {c}.",
lambda c: f"graffiti of a {c}.",
lambda c: f"a bad photo of the {c}.",
lambda c: f"a cropped photo of the {c}.",
lambda c: f"a tattoo of a {c}.",
lambda c: f"the embroidered {c}.",
lambda c: f"a photo of a hard to see {c}.",
lambda c: f"a bright photo of a {c}.",
lambda c: f"a photo of a clean {c}.",
lambda c: f"a photo of a dirty {c}.",
lambda c: f"a dark photo of the {c}.",
lambda c: f"a drawing of a {c}.",
lambda c: f"a photo of my {c}.",
lambda c: f"the plastic {c}.",
lambda c: f"a photo of the cool {c}.",
lambda c: f"a close-up photo of a {c}.",
lambda c: f"a black and white photo of the {c}.",
lambda c: f"a painting of the {c}.",
lambda c: f"a painting of a {c}.",
lambda c: f"a pixelated photo of the {c}.",
lambda c: f"a sculpture of the {c}.",
lambda c: f"a bright photo of the {c}.",
lambda c: f"a cropped photo of a {c}.",
lambda c: f"a plastic {c}.",
lambda c: f"a photo of the dirty {c}.",
lambda c: f"a jpeg corrupted photo of a {c}.",
lambda c: f"a blurry photo of the {c}.",
lambda c: f"a photo of the {c}.",
lambda c: f"a good photo of the {c}.",
lambda c: f"a rendering of the {c}.",
lambda c: f"a {c} in a video game.",
lambda c: f"a photo of one {c}.",
lambda c: f"a doodle of a {c}.",
lambda c: f"a close-up photo of the {c}.",
lambda c: f"a photo of a {c}.",
lambda c: f"the origami {c}.",
lambda c: f"the {c} in a video game.",
lambda c: f"a sketch of a {c}.",
lambda c: f"a doodle of the {c}.",
lambda c: f"a origami {c}.",
lambda c: f"a low resolution photo of a {c}.",
lambda c: f"the toy {c}.",
lambda c: f"a rendition of the {c}.",
lambda c: f"a photo of the clean {c}.",
lambda c: f"a photo of a large {c}.",
lambda c: f"a rendition of a {c}.",
lambda c: f"a photo of a nice {c}.",
lambda c: f"a photo of a weird {c}.",
lambda c: f"a blurry photo of a {c}.",
lambda c: f"a cartoon {c}.",
lambda c: f"art of a {c}.",
lambda c: f"a sketch of the {c}.",
lambda c: f"a embroidered {c}.",
lambda c: f"a pixelated photo of a {c}.",
lambda c: f"itap of the {c}.",
lambda c: f"a jpeg corrupted photo of the {c}.",
lambda c: f"a good photo of a {c}.",
lambda c: f"a plushie {c}.",
lambda c: f"a photo of the nice {c}.",
lambda c: f"a photo of the small {c}.",
lambda c: f"a photo of the weird {c}.",
lambda c: f"the cartoon {c}.",
lambda c: f"art of the {c}.",
lambda c: f"a drawing of the {c}.",
lambda c: f"a photo of the large {c}.",
lambda c: f"a black and white photo of a {c}.",
lambda c: f"the plushie {c}.",
lambda c: f"a dark photo of a {c}.",
lambda c: f"itap of a {c}.",
lambda c: f"graffiti of the {c}.",
lambda c: f"a toy {c}.",
lambda c: f"itap of my {c}.",
lambda c: f"a photo of a cool {c}.",
lambda c: f"a photo of a small {c}.",
lambda c: f"a tattoo of the {c}.",
]
def get_cached_datafile(filename:str):
return hf_hub_download(repo_id=HF_DATAFILE_REPO, filename=filename, repo_type=HF_DATAFILE_REPO_TYPE)
def get_txt_emb():
txt_emb_npy = get_cached_datafile("txt_emb_species.npy")
return torch.from_numpy(np.load(txt_emb_npy))
def get_txt_names():
txt_names_json = get_cached_datafile("txt_emb_species.json")
with open(txt_names_json) as fd:
txt_names = json.load(fd)
return txt_names
preprocess_img = transforms.Compose(
[
transforms.ToTensor(),
transforms.Resize((224, 224), antialias=True),
transforms.Normalize(
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
),
]
)
class Rank(Enum):
KINGDOM = 0
PHYLUM = 1
CLASS = 2
ORDER = 3
FAMILY = 4
GENUS = 5
SPECIES = 6
def get_label(self):
return self.name.lower()
# The datafile of names ('txt_emb_species.json') contains species epithet.
# To create a label for species we concatenate the genus and species epithet.
SPECIES_LABEL = Rank.SPECIES.get_label()
SPECIES_EPITHET_LABEL = "species_epithet"
COMMON_NAME_LABEL = "common_name"
def create_bioclip_model(model_str="hf-hub:imageomics/bioclip", device="cuda"):
model = create_model(model_str, output_dict=True, require_pretrained=True)
model = model.to(device)
return torch.compile(model)
def create_bioclip_tokenizer(tokenizer_str="ViT-B-16"):
return get_tokenizer(tokenizer_str)
class CustomLabelsClassifier(object):
def __init__(self, device: Union[str, torch.device] = 'cpu'):
self.device = device
self.model = create_bioclip_model(device=device)
self.tokenizer = create_bioclip_tokenizer()
def get_txt_features(self, classnames):
all_features = []
for classname in classnames:
txts = [template(classname) for template in OPENA_AI_IMAGENET_TEMPLATE]
txts = self.tokenizer(txts).to(self.device)
txt_features = self.model.encode_text(txts)
txt_features = F.normalize(txt_features, dim=-1).mean(dim=0)
txt_features /= txt_features.norm()
all_features.append(txt_features)
all_features = torch.stack(all_features, dim=1)
return all_features
@torch.no_grad()
def predict(self, image_path: str, cls_ary: List[str]) -> dict[str, float]:
img = PIL.Image.open(image_path)
classes = [cls.strip() for cls in cls_ary]
txt_features = self.get_txt_features(classes)
img = preprocess_img(img).to(self.device)
img_features = self.model.encode_image(img.unsqueeze(0))
img_features = F.normalize(img_features, dim=-1)
logits = (self.model.logit_scale.exp() * img_features @ txt_features).squeeze()
probs = F.softmax(logits, dim=0).to("cpu").tolist()
pred_list = []
for cls, prob in zip(classes, probs):
pred_list.append({
PRED_FILENAME_KEY: image_path,
PRED_CLASSICATION_KEY: cls,
PRED_SCORE_KEY: prob
})
return pred_list
def predict_classifications_from_list(img: Union[PIL.Image.Image, str], cls_ary: List[str], device: Union[str, torch.device] = 'cpu') -> dict[str, float]:
classifier = CustomLabelsClassifier(device=device)
return classifier.predict(img, cls_ary)
def get_tol_classification_labels(rank: Rank) -> List[str]:
names = []
for i in range(rank.value + 1):
i_rank = Rank(i)
if i_rank == Rank.SPECIES:
names.append(SPECIES_EPITHET_LABEL)
rank_name = i_rank.name.lower()
names.append(rank_name)
if rank == Rank.SPECIES:
names.append(COMMON_NAME_LABEL)
return names
def create_classification_dict(names: List[List[str]], rank: Rank) -> dict[str, str]:
scientific_names = names[0]
common_name = names[1]
classification_dict = {}
for idx, label in enumerate(get_tol_classification_labels(rank=rank)):
if label == SPECIES_LABEL:
value = scientific_names[-2] + " " + scientific_names[-1]
elif label == COMMON_NAME_LABEL:
value = common_name
else:
value = scientific_names[idx]
classification_dict[label] = value
return classification_dict
def join_names(classification_dict: dict[str, str]) -> str:
return " ".join(classification_dict.values())
class TreeOfLifeClassifier(object):
def __init__(self, device: Union[str, torch.device] = 'cpu'):
self.device = device
self.model = create_bioclip_model(device=device)
self.txt_emb = get_txt_emb().to(device)
self.txt_names = get_txt_names()
def encode_image(self, img: PIL.Image.Image) -> torch.Tensor:
img = preprocess_img(img).to(self.device)
img_features = self.model.encode_image(img.unsqueeze(0))
return img_features
def predict_species(self, img: PIL.Image.Image) -> torch.Tensor:
img_features = self.encode_image(img)
img_features = F.normalize(img_features, dim=-1)
logits = (self.model.logit_scale.exp() * img_features @ self.txt_emb).squeeze()
probs = F.softmax(logits, dim=0)
return probs
def format_species_probs(self, image_path: str, probs: torch.Tensor, k: int = 5) -> List[dict[str, float]]:
topk = probs.topk(k)
result = []
for i, prob in zip(topk.indices, topk.values):
item = { PRED_FILENAME_KEY: image_path }
item.update(create_classification_dict(self.txt_names[i], Rank.SPECIES))
item[PRED_SCORE_KEY] = prob.item()
result.append(item)
return result
def format_grouped_probs(self, image_path: str, probs: torch.Tensor, rank: Rank, min_prob: float = 1e-9, k: int = 5) -> List[dict[str, float]]:
output = collections.defaultdict(float)
class_dict_lookup = {}
name_to_class_dict = {}
for i in torch.nonzero(probs > min_prob).squeeze():
classification_dict = create_classification_dict(self.txt_names[i], rank)
name = join_names(classification_dict)
class_dict_lookup[name] = classification_dict
output[name] += probs[i]
name_to_class_dict[name] = classification_dict
topk_names = heapq.nlargest(k, output, key=output.get)
prediction_ary = []
for name in topk_names:
item = { PRED_FILENAME_KEY: image_path }
item.update(name_to_class_dict[name])
#item.update(class_dict_lookup)
item[PRED_SCORE_KEY] = output[name].item()
prediction_ary.append(item)
return prediction_ary
@torch.no_grad()
def predict(self, image_path: str, rank: Rank, min_prob: float = 1e-9, k: int = 5) -> List[dict[str, float]]:
img = PIL.Image.open(image_path)
probs = self.predict_species(img)
if rank == Rank.SPECIES:
return self.format_species_probs(image_path, probs, k)
return self.format_grouped_probs(image_path, probs, rank, min_prob, k)
def predict_classification(img: str, rank: Rank, device: Union[str, torch.device] = 'cpu',
min_prob: float = 1e-9, k: int = 5) -> dict[str, float]:
"""
Predicts from the entire tree of life.
If targeting a higher rank than species, then this function predicts among all
species, then sums up species-level probabilities for the given rank.
"""
classifier = TreeOfLifeClassifier(device=device)
return classifier.predict(img, rank, min_prob, k) |