3koozy commited on
Commit
cb06f79
·
1 Parent(s): c0a61f7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -5
app.py CHANGED
@@ -14,9 +14,13 @@ mlp_model = load(open('mlp_classifier.pkl', 'rb'))
14
  my_scaler = load(open('scaler.pkl', 'rb'))
15
  hot_enc_scaler = load(open('hot_enc.pkl', 'rb'))
16
 
17
- def predict_value(age,height_cm,weight_kg,overall,potential,nationality,club):
 
 
 
 
18
  #pre-processing:
19
- numerical_features = [[age,height_cm,weight_kg,overall,potential]]
20
  catagorical_features = [[nationality,club]]
21
  numerical_features = my_scaler.transform(numerical_features)
22
  catagorical_features = hot_enc_scaler.transform(catagorical_features).toarray()
@@ -29,7 +33,10 @@ def predict_value(age,height_cm,weight_kg,overall,potential,nationality,club):
29
  demo = gr.Interface(
30
  fn=predict_value,
31
  inputs=[gr.Slider(15, 60),gr.Slider(100, 200),gr.Slider(0, 100),gr.Slider(0, 100),gr.Slider(0, 100),
32
- gr.inputs.Dropdown(["Argentina" , "Saudi Arabia", "England","Egypt"]),
33
- gr.inputs.Dropdown(["FC Barcelona" , "Juventus", "Liverpool","Al Hilal","Al Nassr"])],
34
- outputs=["number"])
 
 
 
35
  demo.launch()
 
14
  my_scaler = load(open('scaler.pkl', 'rb'))
15
  hot_enc_scaler = load(open('hot_enc.pkl', 'rb'))
16
 
17
+ description = '''
18
+ This small prototype is using Big Data and AI to provide an accurate estimate of FootBall player net worth in euros.
19
+ '''
20
+
21
+ def predict_value(age,height_cm,weight_kg,overall_skill,potential_skill,nationality,club):
22
  #pre-processing:
23
+ numerical_features = [[age,height_cm,weight_kg,overall_skill,potential_skill]]
24
  catagorical_features = [[nationality,club]]
25
  numerical_features = my_scaler.transform(numerical_features)
26
  catagorical_features = hot_enc_scaler.transform(catagorical_features).toarray()
 
33
  demo = gr.Interface(
34
  fn=predict_value,
35
  inputs=[gr.Slider(15, 60),gr.Slider(100, 200),gr.Slider(0, 100),gr.Slider(0, 100),gr.Slider(0, 100),
36
+ gr.inputs.Dropdown(["Argentina" , "Saudi Arabia", "England"]),
37
+ gr.inputs.Dropdown(["FC Barcelona" , "Juventus", "Liverpool"])],
38
+ outputs=[gr.Number(label='Net Worth (Euros)')],
39
+ title= "TalentAI - Estimate FB Player Value (Eur)",
40
+ description = description,
41
+ article = "Abdulaziz Alakooz developed this prototype as part of Thkaa AI in sports contest - August 2022.")
42
  demo.launch()