3koozy commited on
Commit
7f6fa29
·
1 Parent(s): 1014ac5

Create new file

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import needed libraries:
2
+ import pandas as pd
3
+ import numpy as np
4
+ from IPython.display import display
5
+ from sklearn import preprocessing
6
+ from sklearn.neighbors import KNeighborsRegressor
7
+ from sklearn.neural_network import MLPRegressor
8
+ from sklearn.preprocessing import OneHotEncoder
9
+ from pickle import dump, load
10
+ import gradio as gr
11
+
12
+ # load the model
13
+ mlp_model = load(open('mlp_classifier.pkl', 'rb'))
14
+ # load the scaler
15
+ my_scaler = load(open('scaler.pkl', 'rb'))
16
+ hot_enc_scaler = load(open('hot_enc.pkl', 'rb'))
17
+
18
+ def predict_value(age,height_cm,weight_kg,overall,potential,nationality,club):
19
+ #pre-processing:
20
+ numerical_features = [[age,height_cm,weight_kg,overall,potential]]
21
+ catagorical_features = [[nationality,club]]
22
+ numerical_features = my_scaler.transform(numerical_features)
23
+ catagorical_features = hot_enc_scaler.transform(catagorical_features).toarray()
24
+ sample_player = np.concatenate((numerical_features[0], catagorical_features[0]), axis=0)
25
+ #predict:
26
+ predicted_value = mlp_model.predict(sample_player.reshape(1, -1))
27
+ return predicted_value
28
+
29
+
30
+ demo = gr.Interface(
31
+ fn=predict_value,
32
+ inputs=[gr.Slider(15, 60),gr.Slider(100, 200),gr.Slider(0, 100),gr.Slider(0, 100),gr.Slider(0, 100),
33
+ gr.inputs.Dropdown(["Argentina" , "Saudi Arabia", "England"]),
34
+ gr.inputs.Dropdown(["FC Barcelona" , "Juventus", "Liverpool"])],
35
+ outputs=["number"])
36
+ demo.launch()