3dredstone commited on
Commit
800020f
·
verified ·
1 Parent(s): 6f2594f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -15
README.md CHANGED
@@ -64,44 +64,56 @@ pip install transformers torch pillow gradio
64
 
65
  ```python
66
  import gradio as gr
67
- from transformers import AutoImageProcessor, SiglipForImageClassification
68
  from PIL import Image
69
  import torch
70
 
71
- # Load model and processor
72
  model_name = "prithivMLmods/Bone-Fracture-Detection"
73
- model = SiglipForImageClassification.from_pretrained(model_name)
74
  processor = AutoImageProcessor.from_pretrained(model_name)
75
 
76
- # ID to label mapping
77
- id2label = {
78
- "0": "Fractured",
79
- "1": "Not Fractured"
80
- }
81
-
82
  def detect_fracture(image):
 
 
 
 
83
  image = Image.fromarray(image).convert("RGB")
 
 
84
  inputs = processor(images=image, return_tensors="pt")
85
 
 
86
  with torch.no_grad():
87
  outputs = model(**inputs)
88
  logits = outputs.logits
 
 
89
  probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
90
 
91
- prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
 
 
 
92
  return prediction
93
 
94
- # Gradio Interface
95
  iface = gr.Interface(
96
  fn=detect_fracture,
97
- inputs=gr.Image(type="numpy"),
98
- outputs=gr.Label(num_top_classes=2, label="Fracture Detection"),
99
- title="Bone-Fracture-Detection",
100
- description="Upload a bone X-ray image to detect if there is a fracture."
 
 
 
 
101
  )
102
 
 
103
  if __name__ == "__main__":
104
  iface.launch()
 
105
  ```
106
 
107
  ---
 
64
 
65
  ```python
66
  import gradio as gr
67
+ from transformers import AutoImageProcessor, AutoModelForImageClassification
68
  from PIL import Image
69
  import torch
70
 
71
+ # Load model and processor from the Hugging Face Hub
72
  model_name = "prithivMLmods/Bone-Fracture-Detection"
73
+ model = AutoModelForImageClassification.from_pretrained(model_name)
74
  processor = AutoImageProcessor.from_pretrained(model_name)
75
 
 
 
 
 
 
 
76
  def detect_fracture(image):
77
+ """
78
+ Takes a NumPy image array, processes it, and returns the model's prediction.
79
+ """
80
+ # Convert NumPy array to a PIL Image
81
  image = Image.fromarray(image).convert("RGB")
82
+
83
+ # Process the image and prepare it as input for the model
84
  inputs = processor(images=image, return_tensors="pt")
85
 
86
+ # Perform inference without calculating gradients
87
  with torch.no_grad():
88
  outputs = model(**inputs)
89
  logits = outputs.logits
90
+
91
+ # Apply softmax to get probabilities and convert to a list
92
  probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
93
 
94
+ # Create a dictionary of labels and their corresponding probabilities
95
+ # This now correctly uses the labels from the model's configuration
96
+ prediction = {model.config.id2label[i]: round(probs[i], 3) for i in range(len(probs))}
97
+
98
  return prediction
99
 
100
+ # Create the Gradio Interface
101
  iface = gr.Interface(
102
  fn=detect_fracture,
103
+ inputs=gr.Image(type="numpy", label="Upload Bone X-ray"),
104
+ outputs=gr.Label(num_top_classes=2, label="Detection Result"),
105
+ title="🔬 Bone Fracture Detection",
106
+ description="Upload a bone X-ray image to detect if there is a fracture. The model will return the probability for 'Fractured' and 'Not Fractured'.",
107
+ examples=[
108
+ ["fractured_example.png"],
109
+ ["not_fractured_example.png"]
110
+ ] # Note: You would need to have these image files in the same directory for the examples to work.
111
  )
112
 
113
+ # Launch the app
114
  if __name__ == "__main__":
115
  iface.launch()
116
+
117
  ```
118
 
119
  ---