import torch from diffusers import DiffusionPipeline import gradio as gr generator = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256") # move to GPU if available if torch.cuda.is_available(): generator = generator.to("cuda") def generate(prompts): images = generator(list(prompts)).images return [images] demo = gr.Interface( generate, "textbox", "image", batch=True, max_batch_size=2, # Set the batch size based on your CPU/GPU memory ).queue() if __name__ == "__main__": demo.launch(share=True)