import numpy as np import PIL.Image import PIL.ImageOps def exif_transpose(img): if not img: return img exif_orientation_tag = 274 # Check for EXIF data (only present on some files) if ( hasattr(img, "_getexif") and isinstance(img._getexif(), dict) and exif_orientation_tag in img._getexif() ): exif_data = img._getexif() orientation = exif_data[exif_orientation_tag] # Handle EXIF Orientation if orientation == 1: # Normal image - nothing to do! pass elif orientation == 2: # Mirrored left to right img = img.transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 3: # Rotated 180 degrees img = img.rotate(180) elif orientation == 4: # Mirrored top to bottom img = img.rotate(180).transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 5: # Mirrored along top-left diagonal img = img.rotate(-90, expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 6: # Rotated 90 degrees img = img.rotate(-90, expand=True) elif orientation == 7: # Mirrored along top-right diagonal img = img.rotate(90, expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 8: # Rotated 270 degrees img = img.rotate(90, expand=True) return img def load_image_file(file, mode="RGB"): # Load the image with PIL img = PIL.Image.open(file) if hasattr(PIL.ImageOps, "exif_transpose"): # Very recent versions of PIL can do exit transpose internally img = PIL.ImageOps.exif_transpose(img) else: # Otherwise, do the exif transpose ourselves img = exif_transpose(img) img = img.convert(mode) return np.array(img)