Spaces:
Running
on
Zero
Running
on
Zero
move detail models in app
Browse files
app.py
CHANGED
@@ -25,6 +25,138 @@ import os
|
|
25 |
from engine.pose_estimation.pose_estimator import PoseEstimator
|
26 |
from LHM.utils.face_detector import VGGHeadDetector
|
27 |
from LHM.utils.hf_hub import wrap_model_hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def parse_configs():
|
30 |
|
@@ -193,11 +325,192 @@ def demo_lhm(pose_estimator, face_detector, lhm_model, cfg):
|
|
193 |
motion_img_need_mask = cfg.get("motion_img_need_mask", False) # False
|
194 |
vis_motion = cfg.get("vis_motion", False) # False
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
# self.infer_single(
|
203 |
# image_path,
|
@@ -221,6 +534,7 @@ def demo_lhm(pose_estimator, face_detector, lhm_model, cfg):
|
|
221 |
# gradio_video_save_path=dump_video_path
|
222 |
# ))
|
223 |
|
|
|
224 |
# if status:
|
225 |
# return dump_image_path, dump_video_path
|
226 |
# else:
|
|
|
25 |
from engine.pose_estimation.pose_estimator import PoseEstimator
|
26 |
from LHM.utils.face_detector import VGGHeadDetector
|
27 |
from LHM.utils.hf_hub import wrap_model_hub
|
28 |
+
from LHM.runners.infer.utils import (
|
29 |
+
calc_new_tgt_size_by_aspect,
|
30 |
+
center_crop_according_to_mask,
|
31 |
+
prepare_motion_seqs,
|
32 |
+
resize_image_keepaspect_np,
|
33 |
+
)
|
34 |
+
|
35 |
+
def infer_preprocess_image(
|
36 |
+
rgb_path,
|
37 |
+
mask,
|
38 |
+
intr,
|
39 |
+
pad_ratio,
|
40 |
+
bg_color,
|
41 |
+
max_tgt_size,
|
42 |
+
aspect_standard,
|
43 |
+
enlarge_ratio,
|
44 |
+
render_tgt_size,
|
45 |
+
multiply,
|
46 |
+
need_mask=True,
|
47 |
+
):
|
48 |
+
"""inferece
|
49 |
+
image, _, _ = preprocess_image(image_path, mask_path=None, intr=None, pad_ratio=0, bg_color=1.0,
|
50 |
+
max_tgt_size=896, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1.0],
|
51 |
+
render_tgt_size=source_size, multiply=14, need_mask=True)
|
52 |
+
|
53 |
+
"""
|
54 |
+
|
55 |
+
rgb = np.array(Image.open(rgb_path))
|
56 |
+
rgb_raw = rgb.copy()
|
57 |
+
|
58 |
+
bbox = get_bbox(mask)
|
59 |
+
bbox_list = bbox.get_box()
|
60 |
+
|
61 |
+
rgb = rgb[bbox_list[1] : bbox_list[3], bbox_list[0] : bbox_list[2]]
|
62 |
+
mask = mask[bbox_list[1] : bbox_list[3], bbox_list[0] : bbox_list[2]]
|
63 |
+
|
64 |
+
h, w, _ = rgb.shape
|
65 |
+
assert w < h
|
66 |
+
cur_ratio = h / w
|
67 |
+
scale_ratio = cur_ratio / aspect_standard
|
68 |
+
|
69 |
+
target_w = int(min(w * scale_ratio, h))
|
70 |
+
offset_w = (target_w - w) // 2
|
71 |
+
# resize to target ratio.
|
72 |
+
if offset_w > 0:
|
73 |
+
rgb = np.pad(
|
74 |
+
rgb,
|
75 |
+
((0, 0), (offset_w, offset_w), (0, 0)),
|
76 |
+
mode="constant",
|
77 |
+
constant_values=255,
|
78 |
+
)
|
79 |
+
mask = np.pad(
|
80 |
+
mask,
|
81 |
+
((0, 0), (offset_w, offset_w)),
|
82 |
+
mode="constant",
|
83 |
+
constant_values=0,
|
84 |
+
)
|
85 |
+
else:
|
86 |
+
offset_w = -offset_w
|
87 |
+
rgb = rgb[:,offset_w:-offset_w,:]
|
88 |
+
mask = mask[:,offset_w:-offset_w]
|
89 |
+
|
90 |
+
# resize to target ratio.
|
91 |
+
|
92 |
+
rgb = np.pad(
|
93 |
+
rgb,
|
94 |
+
((0, 0), (offset_w, offset_w), (0, 0)),
|
95 |
+
mode="constant",
|
96 |
+
constant_values=255,
|
97 |
+
)
|
98 |
+
|
99 |
+
mask = np.pad(
|
100 |
+
mask,
|
101 |
+
((0, 0), (offset_w, offset_w)),
|
102 |
+
mode="constant",
|
103 |
+
constant_values=0,
|
104 |
+
)
|
105 |
+
|
106 |
+
rgb = rgb / 255.0 # normalize to [0, 1]
|
107 |
+
mask = mask / 255.0
|
108 |
+
|
109 |
+
mask = (mask > 0.5).astype(np.float32)
|
110 |
+
rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None])
|
111 |
+
|
112 |
+
# resize to specific size require by preprocessor of smplx-estimator.
|
113 |
+
rgb = resize_image_keepaspect_np(rgb, max_tgt_size)
|
114 |
+
mask = resize_image_keepaspect_np(mask, max_tgt_size)
|
115 |
+
|
116 |
+
# crop image to enlarge human area.
|
117 |
+
rgb, mask, offset_x, offset_y = center_crop_according_to_mask(
|
118 |
+
rgb, mask, aspect_standard, enlarge_ratio
|
119 |
+
)
|
120 |
+
if intr is not None:
|
121 |
+
intr[0, 2] -= offset_x
|
122 |
+
intr[1, 2] -= offset_y
|
123 |
+
|
124 |
+
# resize to render_tgt_size for training
|
125 |
+
|
126 |
+
tgt_hw_size, ratio_y, ratio_x = calc_new_tgt_size_by_aspect(
|
127 |
+
cur_hw=rgb.shape[:2],
|
128 |
+
aspect_standard=aspect_standard,
|
129 |
+
tgt_size=render_tgt_size,
|
130 |
+
multiply=multiply,
|
131 |
+
)
|
132 |
+
|
133 |
+
rgb = cv2.resize(
|
134 |
+
rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA
|
135 |
+
)
|
136 |
+
mask = cv2.resize(
|
137 |
+
mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA
|
138 |
+
)
|
139 |
+
|
140 |
+
if intr is not None:
|
141 |
+
|
142 |
+
# ******************** Merge *********************** #
|
143 |
+
intr = scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y)
|
144 |
+
assert (
|
145 |
+
abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5
|
146 |
+
), f"{intr[0, 2] * 2}, {rgb.shape[1]}"
|
147 |
+
assert (
|
148 |
+
abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5
|
149 |
+
), f"{intr[1, 2] * 2}, {rgb.shape[0]}"
|
150 |
+
|
151 |
+
# ******************** Merge *********************** #
|
152 |
+
intr[0, 2] = rgb.shape[1] // 2
|
153 |
+
intr[1, 2] = rgb.shape[0] // 2
|
154 |
+
|
155 |
+
rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0) # [1, 3, H, W]
|
156 |
+
mask = (
|
157 |
+
torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0)
|
158 |
+
) # [1, 1, H, W]
|
159 |
+
return rgb, mask, intr
|
160 |
|
161 |
def parse_configs():
|
162 |
|
|
|
325 |
motion_img_need_mask = cfg.get("motion_img_need_mask", False) # False
|
326 |
vis_motion = cfg.get("vis_motion", False) # False
|
327 |
|
328 |
+
|
329 |
+
input_np = cv2.imread(image_raw)
|
330 |
+
output_np = remove(input_np)
|
331 |
+
parsing_mask = output_np[:,:,3]
|
332 |
+
|
333 |
+
# prepare reference image
|
334 |
+
image, _, _ = infer_preprocess_image(
|
335 |
+
image_raw,
|
336 |
+
mask=parsing_mask,
|
337 |
+
intr=None,
|
338 |
+
pad_ratio=0,
|
339 |
+
bg_color=1.0,
|
340 |
+
max_tgt_size=896,
|
341 |
+
aspect_standard=aspect_standard,
|
342 |
+
enlarge_ratio=[1.0, 1.0],
|
343 |
+
render_tgt_size=source_size,
|
344 |
+
multiply=14,
|
345 |
+
need_mask=True,
|
346 |
+
)
|
347 |
+
|
348 |
+
try:
|
349 |
+
rgb = np.array(Image.open(image_path))
|
350 |
+
rgb = torch.from_numpy(rgb).permute(2, 0, 1)
|
351 |
+
bbox = face_detector.detect_face(rgb)
|
352 |
+
head_rgb = rgb[:, int(bbox[1]) : int(bbox[3]), int(bbox[0]) : int(bbox[2])]
|
353 |
+
head_rgb = head_rgb.permute(1, 2, 0)
|
354 |
+
src_head_rgb = head_rgb.cpu().numpy()
|
355 |
+
except:
|
356 |
+
print("w/o head input!")
|
357 |
+
src_head_rgb = np.zeros((112, 112, 3), dtype=np.uint8)
|
358 |
+
|
359 |
+
# resize to dino size
|
360 |
+
try:
|
361 |
+
src_head_rgb = cv2.resize(
|
362 |
+
src_head_rgb,
|
363 |
+
dsize=(cfg.src_head_size, cfg.src_head_size),
|
364 |
+
interpolation=cv2.INTER_AREA,
|
365 |
+
) # resize to dino size
|
366 |
+
except:
|
367 |
+
src_head_rgb = np.zeros(
|
368 |
+
(cfg.src_head_size, cfg.src_head_size, 3), dtype=np.uint8
|
369 |
+
)
|
370 |
+
|
371 |
+
src_head_rgb = (
|
372 |
+
torch.from_numpy(src_head_rgb / 255.0).float().permute(2, 0, 1).unsqueeze(0)
|
373 |
+
) # [1, 3, H, W]
|
374 |
+
|
375 |
+
save_ref_img_path = os.path.join(
|
376 |
+
dump_tmp_dir, "output.png"
|
377 |
+
)
|
378 |
+
vis_ref_img = (image[0].permute(1, 2, 0).cpu().detach().numpy() * 255).astype(
|
379 |
+
np.uint8
|
380 |
+
)
|
381 |
+
Image.fromarray(vis_ref_img).save(save_ref_img_path)
|
382 |
+
|
383 |
+
# read motion seq
|
384 |
+
motion_name = os.path.dirname(
|
385 |
+
motion_seqs_dir[:-1] if motion_seqs_dir[-1] == "/" else motion_seqs_dir
|
386 |
+
)
|
387 |
+
motion_name = os.path.basename(motion_name)
|
388 |
+
|
389 |
+
motion_seq = prepare_motion_seqs(
|
390 |
+
motion_seqs_dir,
|
391 |
+
None,
|
392 |
+
save_root=dump_tmp_dir,
|
393 |
+
fps=30,
|
394 |
+
bg_color=1.0,
|
395 |
+
aspect_standard=aspect_standard,
|
396 |
+
enlarge_ratio=[1.0, 1, 0],
|
397 |
+
render_image_res=render_size,
|
398 |
+
multiply=16,
|
399 |
+
need_mask=motion_img_need_mask,
|
400 |
+
vis_motion=vis_motion,
|
401 |
+
)
|
402 |
+
|
403 |
+
camera_size = len(motion_seq["motion_seqs"])
|
404 |
+
shape_param = shape_pose.beta
|
405 |
+
|
406 |
+
device = "cuda"
|
407 |
+
dtype = torch.float32
|
408 |
+
shape_param = torch.tensor(shape_param, dtype=dtype).unsqueeze(0)
|
409 |
+
|
410 |
+
lhm.to(dtype)
|
411 |
+
|
412 |
+
smplx_params = motion_seq['smplx_params']
|
413 |
+
smplx_params['betas'] = shape_param.to(device)
|
414 |
+
|
415 |
+
gs_model_list, query_points, transform_mat_neutral_pose = lhm.infer_single_view(
|
416 |
+
image.unsqueeze(0).to(device, dtype),
|
417 |
+
src_head_rgb.unsqueeze(0).to(device, dtype),
|
418 |
+
None,
|
419 |
+
None,
|
420 |
+
render_c2ws=motion_seq["render_c2ws"].to(device),
|
421 |
+
render_intrs=motion_seq["render_intrs"].to(device),
|
422 |
+
render_bg_colors=motion_seq["render_bg_colors"].to(device),
|
423 |
+
smplx_params={
|
424 |
+
k: v.to(device) for k, v in smplx_params.items()
|
425 |
+
},
|
426 |
+
)
|
427 |
+
|
428 |
+
|
429 |
+
# rendering !!!!
|
430 |
+
|
431 |
+
start_time = time.time()
|
432 |
+
batch_dict = dict()
|
433 |
+
batch_size = 40 # avoid memeory out!
|
434 |
+
|
435 |
+
for batch_i in range(0, camera_size, batch_size):
|
436 |
+
with torch.no_grad():
|
437 |
+
# TODO check device and dtype
|
438 |
+
# dict_keys(['comp_rgb', 'comp_rgb_bg', 'comp_mask', 'comp_depth', '3dgs'])
|
439 |
+
keys = [
|
440 |
+
"root_pose",
|
441 |
+
"body_pose",
|
442 |
+
"jaw_pose",
|
443 |
+
"leye_pose",
|
444 |
+
"reye_pose",
|
445 |
+
"lhand_pose",
|
446 |
+
"rhand_pose",
|
447 |
+
"trans",
|
448 |
+
"focal",
|
449 |
+
"princpt",
|
450 |
+
"img_size_wh",
|
451 |
+
"expr",
|
452 |
+
]
|
453 |
+
batch_smplx_params = dict()
|
454 |
+
batch_smplx_params["betas"] = shape_param.to(device)
|
455 |
+
batch_smplx_params['transform_mat_neutral_pose'] = transform_mat_neutral_pose
|
456 |
+
for key in keys:
|
457 |
+
batch_smplx_params[key] = motion_seq["smplx_params"][key][
|
458 |
+
:, batch_i : batch_i + batch_size
|
459 |
+
].to(device)
|
460 |
+
|
461 |
+
res = self.model.animation_infer(gs_model_list, query_points, batch_smplx_params,
|
462 |
+
render_c2ws=motion_seq["render_c2ws"][
|
463 |
+
:, batch_i : batch_i + batch_size
|
464 |
+
].to(device),
|
465 |
+
render_intrs=motion_seq["render_intrs"][
|
466 |
+
:, batch_i : batch_i + batch_size
|
467 |
+
].to(device),
|
468 |
+
render_bg_colors=motion_seq["render_bg_colors"][
|
469 |
+
:, batch_i : batch_i + batch_size
|
470 |
+
].to(device),
|
471 |
+
)
|
472 |
+
|
473 |
+
for accumulate_key in ["comp_rgb", "comp_mask"]:
|
474 |
+
if accumulate_key not in batch_dict:
|
475 |
+
batch_dict[accumulate_key] = []
|
476 |
+
batch_dict[accumulate_key].append(res[accumulate_key].detach().cpu())
|
477 |
+
del res
|
478 |
+
torch.cuda.empty_cache()
|
479 |
+
|
480 |
+
for accumulate_key in ["comp_rgb", "comp_mask"]:
|
481 |
+
batch_dict[accumulate_key] = torch.cat(batch_dict[accumulate_key], dim=0)
|
482 |
+
|
483 |
+
print(f"time elapsed: {time.time() - start_time}")
|
484 |
+
rgb = batch_dict["comp_rgb"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1
|
485 |
+
mask = batch_dict["comp_mask"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1
|
486 |
+
mask[mask < 0.5] = 0.0
|
487 |
+
|
488 |
+
rgb = rgb * mask + (1 - mask) * 1
|
489 |
+
rgb = np.clip(rgb * 255, 0, 255).astype(np.uint8)
|
490 |
+
|
491 |
+
if vis_motion:
|
492 |
+
# print(rgb.shape, motion_seq["vis_motion_render"].shape)
|
493 |
+
|
494 |
+
vis_ref_img = np.tile(
|
495 |
+
cv2.resize(vis_ref_img, (rgb[0].shape[1], rgb[0].shape[0]))[
|
496 |
+
None, :, :, :
|
497 |
+
],
|
498 |
+
(rgb.shape[0], 1, 1, 1),
|
499 |
+
)
|
500 |
+
rgb = np.concatenate(
|
501 |
+
[rgb, motion_seq["vis_motion_render"], vis_ref_img], axis=2
|
502 |
+
)
|
503 |
+
|
504 |
+
os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
|
505 |
+
|
506 |
+
images_to_video(
|
507 |
+
rgb,
|
508 |
+
output_path=dump_video_path,
|
509 |
+
fps=render_fps,
|
510 |
+
gradio_codec=False,
|
511 |
+
verbose=True,
|
512 |
+
)
|
513 |
+
|
514 |
|
515 |
# self.infer_single(
|
516 |
# image_path,
|
|
|
534 |
# gradio_video_save_path=dump_video_path
|
535 |
# ))
|
536 |
|
537 |
+
return dump_image_path, dump_video_path
|
538 |
# if status:
|
539 |
# return dump_image_path, dump_video_path
|
540 |
# else:
|