Spaces:
Running
on
Zero
Running
on
Zero
move detail models in app
Browse files
app.py
CHANGED
|
@@ -25,6 +25,138 @@ import os
|
|
| 25 |
from engine.pose_estimation.pose_estimator import PoseEstimator
|
| 26 |
from LHM.utils.face_detector import VGGHeadDetector
|
| 27 |
from LHM.utils.hf_hub import wrap_model_hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def parse_configs():
|
| 30 |
|
|
@@ -193,11 +325,192 @@ def demo_lhm(pose_estimator, face_detector, lhm_model, cfg):
|
|
| 193 |
motion_img_need_mask = cfg.get("motion_img_need_mask", False) # False
|
| 194 |
vis_motion = cfg.get("vis_motion", False) # False
|
| 195 |
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
# self.infer_single(
|
| 203 |
# image_path,
|
|
@@ -221,6 +534,7 @@ def demo_lhm(pose_estimator, face_detector, lhm_model, cfg):
|
|
| 221 |
# gradio_video_save_path=dump_video_path
|
| 222 |
# ))
|
| 223 |
|
|
|
|
| 224 |
# if status:
|
| 225 |
# return dump_image_path, dump_video_path
|
| 226 |
# else:
|
|
|
|
| 25 |
from engine.pose_estimation.pose_estimator import PoseEstimator
|
| 26 |
from LHM.utils.face_detector import VGGHeadDetector
|
| 27 |
from LHM.utils.hf_hub import wrap_model_hub
|
| 28 |
+
from LHM.runners.infer.utils import (
|
| 29 |
+
calc_new_tgt_size_by_aspect,
|
| 30 |
+
center_crop_according_to_mask,
|
| 31 |
+
prepare_motion_seqs,
|
| 32 |
+
resize_image_keepaspect_np,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
def infer_preprocess_image(
|
| 36 |
+
rgb_path,
|
| 37 |
+
mask,
|
| 38 |
+
intr,
|
| 39 |
+
pad_ratio,
|
| 40 |
+
bg_color,
|
| 41 |
+
max_tgt_size,
|
| 42 |
+
aspect_standard,
|
| 43 |
+
enlarge_ratio,
|
| 44 |
+
render_tgt_size,
|
| 45 |
+
multiply,
|
| 46 |
+
need_mask=True,
|
| 47 |
+
):
|
| 48 |
+
"""inferece
|
| 49 |
+
image, _, _ = preprocess_image(image_path, mask_path=None, intr=None, pad_ratio=0, bg_color=1.0,
|
| 50 |
+
max_tgt_size=896, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1.0],
|
| 51 |
+
render_tgt_size=source_size, multiply=14, need_mask=True)
|
| 52 |
+
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
rgb = np.array(Image.open(rgb_path))
|
| 56 |
+
rgb_raw = rgb.copy()
|
| 57 |
+
|
| 58 |
+
bbox = get_bbox(mask)
|
| 59 |
+
bbox_list = bbox.get_box()
|
| 60 |
+
|
| 61 |
+
rgb = rgb[bbox_list[1] : bbox_list[3], bbox_list[0] : bbox_list[2]]
|
| 62 |
+
mask = mask[bbox_list[1] : bbox_list[3], bbox_list[0] : bbox_list[2]]
|
| 63 |
+
|
| 64 |
+
h, w, _ = rgb.shape
|
| 65 |
+
assert w < h
|
| 66 |
+
cur_ratio = h / w
|
| 67 |
+
scale_ratio = cur_ratio / aspect_standard
|
| 68 |
+
|
| 69 |
+
target_w = int(min(w * scale_ratio, h))
|
| 70 |
+
offset_w = (target_w - w) // 2
|
| 71 |
+
# resize to target ratio.
|
| 72 |
+
if offset_w > 0:
|
| 73 |
+
rgb = np.pad(
|
| 74 |
+
rgb,
|
| 75 |
+
((0, 0), (offset_w, offset_w), (0, 0)),
|
| 76 |
+
mode="constant",
|
| 77 |
+
constant_values=255,
|
| 78 |
+
)
|
| 79 |
+
mask = np.pad(
|
| 80 |
+
mask,
|
| 81 |
+
((0, 0), (offset_w, offset_w)),
|
| 82 |
+
mode="constant",
|
| 83 |
+
constant_values=0,
|
| 84 |
+
)
|
| 85 |
+
else:
|
| 86 |
+
offset_w = -offset_w
|
| 87 |
+
rgb = rgb[:,offset_w:-offset_w,:]
|
| 88 |
+
mask = mask[:,offset_w:-offset_w]
|
| 89 |
+
|
| 90 |
+
# resize to target ratio.
|
| 91 |
+
|
| 92 |
+
rgb = np.pad(
|
| 93 |
+
rgb,
|
| 94 |
+
((0, 0), (offset_w, offset_w), (0, 0)),
|
| 95 |
+
mode="constant",
|
| 96 |
+
constant_values=255,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
mask = np.pad(
|
| 100 |
+
mask,
|
| 101 |
+
((0, 0), (offset_w, offset_w)),
|
| 102 |
+
mode="constant",
|
| 103 |
+
constant_values=0,
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
rgb = rgb / 255.0 # normalize to [0, 1]
|
| 107 |
+
mask = mask / 255.0
|
| 108 |
+
|
| 109 |
+
mask = (mask > 0.5).astype(np.float32)
|
| 110 |
+
rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None])
|
| 111 |
+
|
| 112 |
+
# resize to specific size require by preprocessor of smplx-estimator.
|
| 113 |
+
rgb = resize_image_keepaspect_np(rgb, max_tgt_size)
|
| 114 |
+
mask = resize_image_keepaspect_np(mask, max_tgt_size)
|
| 115 |
+
|
| 116 |
+
# crop image to enlarge human area.
|
| 117 |
+
rgb, mask, offset_x, offset_y = center_crop_according_to_mask(
|
| 118 |
+
rgb, mask, aspect_standard, enlarge_ratio
|
| 119 |
+
)
|
| 120 |
+
if intr is not None:
|
| 121 |
+
intr[0, 2] -= offset_x
|
| 122 |
+
intr[1, 2] -= offset_y
|
| 123 |
+
|
| 124 |
+
# resize to render_tgt_size for training
|
| 125 |
+
|
| 126 |
+
tgt_hw_size, ratio_y, ratio_x = calc_new_tgt_size_by_aspect(
|
| 127 |
+
cur_hw=rgb.shape[:2],
|
| 128 |
+
aspect_standard=aspect_standard,
|
| 129 |
+
tgt_size=render_tgt_size,
|
| 130 |
+
multiply=multiply,
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
rgb = cv2.resize(
|
| 134 |
+
rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA
|
| 135 |
+
)
|
| 136 |
+
mask = cv2.resize(
|
| 137 |
+
mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
if intr is not None:
|
| 141 |
+
|
| 142 |
+
# ******************** Merge *********************** #
|
| 143 |
+
intr = scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y)
|
| 144 |
+
assert (
|
| 145 |
+
abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5
|
| 146 |
+
), f"{intr[0, 2] * 2}, {rgb.shape[1]}"
|
| 147 |
+
assert (
|
| 148 |
+
abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5
|
| 149 |
+
), f"{intr[1, 2] * 2}, {rgb.shape[0]}"
|
| 150 |
+
|
| 151 |
+
# ******************** Merge *********************** #
|
| 152 |
+
intr[0, 2] = rgb.shape[1] // 2
|
| 153 |
+
intr[1, 2] = rgb.shape[0] // 2
|
| 154 |
+
|
| 155 |
+
rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0) # [1, 3, H, W]
|
| 156 |
+
mask = (
|
| 157 |
+
torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0)
|
| 158 |
+
) # [1, 1, H, W]
|
| 159 |
+
return rgb, mask, intr
|
| 160 |
|
| 161 |
def parse_configs():
|
| 162 |
|
|
|
|
| 325 |
motion_img_need_mask = cfg.get("motion_img_need_mask", False) # False
|
| 326 |
vis_motion = cfg.get("vis_motion", False) # False
|
| 327 |
|
| 328 |
+
|
| 329 |
+
input_np = cv2.imread(image_raw)
|
| 330 |
+
output_np = remove(input_np)
|
| 331 |
+
parsing_mask = output_np[:,:,3]
|
| 332 |
+
|
| 333 |
+
# prepare reference image
|
| 334 |
+
image, _, _ = infer_preprocess_image(
|
| 335 |
+
image_raw,
|
| 336 |
+
mask=parsing_mask,
|
| 337 |
+
intr=None,
|
| 338 |
+
pad_ratio=0,
|
| 339 |
+
bg_color=1.0,
|
| 340 |
+
max_tgt_size=896,
|
| 341 |
+
aspect_standard=aspect_standard,
|
| 342 |
+
enlarge_ratio=[1.0, 1.0],
|
| 343 |
+
render_tgt_size=source_size,
|
| 344 |
+
multiply=14,
|
| 345 |
+
need_mask=True,
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
try:
|
| 349 |
+
rgb = np.array(Image.open(image_path))
|
| 350 |
+
rgb = torch.from_numpy(rgb).permute(2, 0, 1)
|
| 351 |
+
bbox = face_detector.detect_face(rgb)
|
| 352 |
+
head_rgb = rgb[:, int(bbox[1]) : int(bbox[3]), int(bbox[0]) : int(bbox[2])]
|
| 353 |
+
head_rgb = head_rgb.permute(1, 2, 0)
|
| 354 |
+
src_head_rgb = head_rgb.cpu().numpy()
|
| 355 |
+
except:
|
| 356 |
+
print("w/o head input!")
|
| 357 |
+
src_head_rgb = np.zeros((112, 112, 3), dtype=np.uint8)
|
| 358 |
+
|
| 359 |
+
# resize to dino size
|
| 360 |
+
try:
|
| 361 |
+
src_head_rgb = cv2.resize(
|
| 362 |
+
src_head_rgb,
|
| 363 |
+
dsize=(cfg.src_head_size, cfg.src_head_size),
|
| 364 |
+
interpolation=cv2.INTER_AREA,
|
| 365 |
+
) # resize to dino size
|
| 366 |
+
except:
|
| 367 |
+
src_head_rgb = np.zeros(
|
| 368 |
+
(cfg.src_head_size, cfg.src_head_size, 3), dtype=np.uint8
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
src_head_rgb = (
|
| 372 |
+
torch.from_numpy(src_head_rgb / 255.0).float().permute(2, 0, 1).unsqueeze(0)
|
| 373 |
+
) # [1, 3, H, W]
|
| 374 |
+
|
| 375 |
+
save_ref_img_path = os.path.join(
|
| 376 |
+
dump_tmp_dir, "output.png"
|
| 377 |
+
)
|
| 378 |
+
vis_ref_img = (image[0].permute(1, 2, 0).cpu().detach().numpy() * 255).astype(
|
| 379 |
+
np.uint8
|
| 380 |
+
)
|
| 381 |
+
Image.fromarray(vis_ref_img).save(save_ref_img_path)
|
| 382 |
+
|
| 383 |
+
# read motion seq
|
| 384 |
+
motion_name = os.path.dirname(
|
| 385 |
+
motion_seqs_dir[:-1] if motion_seqs_dir[-1] == "/" else motion_seqs_dir
|
| 386 |
+
)
|
| 387 |
+
motion_name = os.path.basename(motion_name)
|
| 388 |
+
|
| 389 |
+
motion_seq = prepare_motion_seqs(
|
| 390 |
+
motion_seqs_dir,
|
| 391 |
+
None,
|
| 392 |
+
save_root=dump_tmp_dir,
|
| 393 |
+
fps=30,
|
| 394 |
+
bg_color=1.0,
|
| 395 |
+
aspect_standard=aspect_standard,
|
| 396 |
+
enlarge_ratio=[1.0, 1, 0],
|
| 397 |
+
render_image_res=render_size,
|
| 398 |
+
multiply=16,
|
| 399 |
+
need_mask=motion_img_need_mask,
|
| 400 |
+
vis_motion=vis_motion,
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
camera_size = len(motion_seq["motion_seqs"])
|
| 404 |
+
shape_param = shape_pose.beta
|
| 405 |
+
|
| 406 |
+
device = "cuda"
|
| 407 |
+
dtype = torch.float32
|
| 408 |
+
shape_param = torch.tensor(shape_param, dtype=dtype).unsqueeze(0)
|
| 409 |
+
|
| 410 |
+
lhm.to(dtype)
|
| 411 |
+
|
| 412 |
+
smplx_params = motion_seq['smplx_params']
|
| 413 |
+
smplx_params['betas'] = shape_param.to(device)
|
| 414 |
+
|
| 415 |
+
gs_model_list, query_points, transform_mat_neutral_pose = lhm.infer_single_view(
|
| 416 |
+
image.unsqueeze(0).to(device, dtype),
|
| 417 |
+
src_head_rgb.unsqueeze(0).to(device, dtype),
|
| 418 |
+
None,
|
| 419 |
+
None,
|
| 420 |
+
render_c2ws=motion_seq["render_c2ws"].to(device),
|
| 421 |
+
render_intrs=motion_seq["render_intrs"].to(device),
|
| 422 |
+
render_bg_colors=motion_seq["render_bg_colors"].to(device),
|
| 423 |
+
smplx_params={
|
| 424 |
+
k: v.to(device) for k, v in smplx_params.items()
|
| 425 |
+
},
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
# rendering !!!!
|
| 430 |
+
|
| 431 |
+
start_time = time.time()
|
| 432 |
+
batch_dict = dict()
|
| 433 |
+
batch_size = 40 # avoid memeory out!
|
| 434 |
+
|
| 435 |
+
for batch_i in range(0, camera_size, batch_size):
|
| 436 |
+
with torch.no_grad():
|
| 437 |
+
# TODO check device and dtype
|
| 438 |
+
# dict_keys(['comp_rgb', 'comp_rgb_bg', 'comp_mask', 'comp_depth', '3dgs'])
|
| 439 |
+
keys = [
|
| 440 |
+
"root_pose",
|
| 441 |
+
"body_pose",
|
| 442 |
+
"jaw_pose",
|
| 443 |
+
"leye_pose",
|
| 444 |
+
"reye_pose",
|
| 445 |
+
"lhand_pose",
|
| 446 |
+
"rhand_pose",
|
| 447 |
+
"trans",
|
| 448 |
+
"focal",
|
| 449 |
+
"princpt",
|
| 450 |
+
"img_size_wh",
|
| 451 |
+
"expr",
|
| 452 |
+
]
|
| 453 |
+
batch_smplx_params = dict()
|
| 454 |
+
batch_smplx_params["betas"] = shape_param.to(device)
|
| 455 |
+
batch_smplx_params['transform_mat_neutral_pose'] = transform_mat_neutral_pose
|
| 456 |
+
for key in keys:
|
| 457 |
+
batch_smplx_params[key] = motion_seq["smplx_params"][key][
|
| 458 |
+
:, batch_i : batch_i + batch_size
|
| 459 |
+
].to(device)
|
| 460 |
+
|
| 461 |
+
res = self.model.animation_infer(gs_model_list, query_points, batch_smplx_params,
|
| 462 |
+
render_c2ws=motion_seq["render_c2ws"][
|
| 463 |
+
:, batch_i : batch_i + batch_size
|
| 464 |
+
].to(device),
|
| 465 |
+
render_intrs=motion_seq["render_intrs"][
|
| 466 |
+
:, batch_i : batch_i + batch_size
|
| 467 |
+
].to(device),
|
| 468 |
+
render_bg_colors=motion_seq["render_bg_colors"][
|
| 469 |
+
:, batch_i : batch_i + batch_size
|
| 470 |
+
].to(device),
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
for accumulate_key in ["comp_rgb", "comp_mask"]:
|
| 474 |
+
if accumulate_key not in batch_dict:
|
| 475 |
+
batch_dict[accumulate_key] = []
|
| 476 |
+
batch_dict[accumulate_key].append(res[accumulate_key].detach().cpu())
|
| 477 |
+
del res
|
| 478 |
+
torch.cuda.empty_cache()
|
| 479 |
+
|
| 480 |
+
for accumulate_key in ["comp_rgb", "comp_mask"]:
|
| 481 |
+
batch_dict[accumulate_key] = torch.cat(batch_dict[accumulate_key], dim=0)
|
| 482 |
+
|
| 483 |
+
print(f"time elapsed: {time.time() - start_time}")
|
| 484 |
+
rgb = batch_dict["comp_rgb"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1
|
| 485 |
+
mask = batch_dict["comp_mask"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1
|
| 486 |
+
mask[mask < 0.5] = 0.0
|
| 487 |
+
|
| 488 |
+
rgb = rgb * mask + (1 - mask) * 1
|
| 489 |
+
rgb = np.clip(rgb * 255, 0, 255).astype(np.uint8)
|
| 490 |
+
|
| 491 |
+
if vis_motion:
|
| 492 |
+
# print(rgb.shape, motion_seq["vis_motion_render"].shape)
|
| 493 |
+
|
| 494 |
+
vis_ref_img = np.tile(
|
| 495 |
+
cv2.resize(vis_ref_img, (rgb[0].shape[1], rgb[0].shape[0]))[
|
| 496 |
+
None, :, :, :
|
| 497 |
+
],
|
| 498 |
+
(rgb.shape[0], 1, 1, 1),
|
| 499 |
+
)
|
| 500 |
+
rgb = np.concatenate(
|
| 501 |
+
[rgb, motion_seq["vis_motion_render"], vis_ref_img], axis=2
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
|
| 505 |
+
|
| 506 |
+
images_to_video(
|
| 507 |
+
rgb,
|
| 508 |
+
output_path=dump_video_path,
|
| 509 |
+
fps=render_fps,
|
| 510 |
+
gradio_codec=False,
|
| 511 |
+
verbose=True,
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
|
| 515 |
# self.infer_single(
|
| 516 |
# image_path,
|
|
|
|
| 534 |
# gradio_video_save_path=dump_video_path
|
| 535 |
# ))
|
| 536 |
|
| 537 |
+
return dump_image_path, dump_video_path
|
| 538 |
# if status:
|
| 539 |
# return dump_image_path, dump_video_path
|
| 540 |
# else:
|