Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
e505fbf
1
Parent(s):
c57ef32
add links
Browse files
app.py
CHANGED
@@ -589,39 +589,20 @@ def demo_lhm(pose_estimator, face_detector, lhm, cfg):
|
|
589 |
|
590 |
os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
|
591 |
|
|
|
|
|
|
|
|
|
|
|
592 |
images_to_video(
|
593 |
rgb,
|
594 |
output_path=dump_video_path,
|
595 |
-
fps=
|
596 |
gradio_codec=False,
|
597 |
verbose=True,
|
598 |
)
|
599 |
-
|
600 |
-
# self.infer_single(
|
601 |
-
# image_path,
|
602 |
-
# motion_seqs_dir=motion_seqs_dir,
|
603 |
-
# motion_img_dir=None,
|
604 |
-
# motion_video_read_fps=30,
|
605 |
-
# export_video=False,
|
606 |
-
# export_mesh=False,
|
607 |
-
# dump_tmp_dir=dump_image_dir,
|
608 |
-
# dump_image_dir=dump_image_dir,
|
609 |
-
# dump_video_path=dump_video_path,
|
610 |
-
# shape_param=shape_pose.beta,
|
611 |
-
# )
|
612 |
-
|
613 |
-
# status = spaces.GPU(infer_impl(
|
614 |
-
# gradio_demo_image=image_raw,
|
615 |
-
# gradio_motion_file=smplx_params_dir,
|
616 |
-
# gradio_masked_image=dump_image_path,
|
617 |
-
# gradio_video_save_path=dump_video_path
|
618 |
-
# ))
|
619 |
-
|
620 |
return dump_image_path, dump_video_path
|
621 |
-
# if status:
|
622 |
-
# return dump_image_path, dump_video_path
|
623 |
-
# else:
|
624 |
-
# return None, None
|
625 |
|
626 |
_TITLE = '''LHM: Large Animatable Human Model'''
|
627 |
|
@@ -643,6 +624,23 @@ def demo_lhm(pose_estimator, face_detector, lhm, cfg):
|
|
643 |
</div>
|
644 |
"""
|
645 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
646 |
gr.HTML(
|
647 |
"""<p><h4 style="color: red;"> Notes: Please input full-body image in case of detection errors. We simplify the pipeline in spaces: 1) using Rembg instead of SAM2; 2) limit the output video length to 10s; For best visual quality, try the inference code on Github instead.</h4></p>"""
|
648 |
)
|
@@ -730,7 +728,7 @@ def demo_lhm(pose_estimator, face_detector, lhm, cfg):
|
|
730 |
outputs=[working_dir],
|
731 |
queue=False,
|
732 |
).success(
|
733 |
-
fn=
|
734 |
inputs=[input_image, video_input, working_dir], # video_params refer to smpl dir
|
735 |
outputs=[processed_image, output_video],
|
736 |
)
|
|
|
589 |
|
590 |
os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
|
591 |
|
592 |
+
return rgb, dump_video_path
|
593 |
+
|
594 |
+
def core_fn_export(image, video_params, working_dir):
|
595 |
+
rgb, dump_video_path = core_fn(image=image, video_params=video_params, working_dir=working_dir)
|
596 |
+
|
597 |
images_to_video(
|
598 |
rgb,
|
599 |
output_path=dump_video_path,
|
600 |
+
fps=30,
|
601 |
gradio_codec=False,
|
602 |
verbose=True,
|
603 |
)
|
604 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
605 |
return dump_image_path, dump_video_path
|
|
|
|
|
|
|
|
|
606 |
|
607 |
_TITLE = '''LHM: Large Animatable Human Model'''
|
608 |
|
|
|
624 |
</div>
|
625 |
"""
|
626 |
)
|
627 |
+
gr.Markdown(
|
628 |
+
"""
|
629 |
+
<p align="center">
|
630 |
+
<a title="Website" href="https://lingtengqiu.github.io/LHM/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
631 |
+
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
|
632 |
+
</a>
|
633 |
+
<a title="arXiv" href="https://arxiv.org/pdf/2503.10625" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
634 |
+
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
|
635 |
+
</a>
|
636 |
+
<a title="Github" href="https://github.com/aigc3d/LHM" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
637 |
+
<img src="https://img.shields.io/github/stars/aigc3d/LHM?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
|
638 |
+
</a>
|
639 |
+
<a title="Video" href="https://www.youtube.com/watch?v=tivEpz_yiEo" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
640 |
+
<img src="https://img.shields.io/badge/YouTube-QiuLingteng-red?logo=youtube" alt="Video">
|
641 |
+
</a>
|
642 |
+
"""
|
643 |
+
)
|
644 |
gr.HTML(
|
645 |
"""<p><h4 style="color: red;"> Notes: Please input full-body image in case of detection errors. We simplify the pipeline in spaces: 1) using Rembg instead of SAM2; 2) limit the output video length to 10s; For best visual quality, try the inference code on Github instead.</h4></p>"""
|
646 |
)
|
|
|
728 |
outputs=[working_dir],
|
729 |
queue=False,
|
730 |
).success(
|
731 |
+
fn=core_fn_export,
|
732 |
inputs=[input_image, video_input, working_dir], # video_params refer to smpl dir
|
733 |
outputs=[processed_image, output_video],
|
734 |
)
|