QZFantasies commited on
Commit
1e0d3f4
·
1 Parent(s): c4a4fb7

update limits

Browse files
Files changed (2) hide show
  1. LHM/utils/ffmpeg_utils.py +12 -11
  2. app.py +17 -18
LHM/utils/ffmpeg_utils.py CHANGED
@@ -48,19 +48,20 @@ def images_to_video(images, output_path, fps, gradio_codec: bool, verbose=False,
48
  f"Frame value out of range: {frame.min()} ~ {frame.max()}"
49
  else:
50
  frame = images[i]
51
- # width, height = frame.shape[1], frame.shape[0]
52
  # reshape to limit the export time
53
- # if width > 1200 or height > 1200 or images.shape[0] > 400:
54
- # frames.append(cv2.resize(frame, (width // 2, height // 2)))
55
  frames.append(frame)
56
- # limit the frames directly @NOTE huggingface only!
57
- frames = frames[:300]
58
 
59
  frames = np.stack(frames)
60
 
61
- try:
62
- imageio.mimwrite(output_path, frames, fps=30, codec="libx264")
63
- print("save {} using imageio.".format(output_path))
64
- except:
65
- iio.imwrite(output_path,frames,fps=fps,codec="libx264",pixelformat="yuv420p",bitrate=bitrate,macro_block_size=16)
66
- print("save {} using imageio.v3 .".format(output_path))
 
 
48
  f"Frame value out of range: {frame.min()} ~ {frame.max()}"
49
  else:
50
  frame = images[i]
51
+ width, height = frame.shape[1], frame.shape[0]
52
  # reshape to limit the export time
53
+ if width > 1200 or height > 1200 or images.shape[0] > 200:
54
+ frames.append(cv2.resize(frame, (width // 2, height // 2)))
55
  frames.append(frame)
56
+ # limit the frames directly @NOTE huggingface only!
57
+ frames = frames[:200]
58
 
59
  frames = np.stack(frames)
60
 
61
+ # try:
62
+ # imageio.mimwrite(output_path, frames, fps=30, codec="libx264")
63
+ # print("save {} using imageio.".format(output_path))
64
+ # except:
65
+ print("start saving {} using imageio.v3 .".format(output_path))
66
+ iio.imwrite(output_path,frames,fps=fps,codec="libx264",pixelformat="yuv420p",bitrate=bitrate, macro_block_size=32)
67
+ print("saved {} using imageio.v3 .".format(output_path))
app.py CHANGED
@@ -589,11 +589,6 @@ def demo_lhm(pose_estimator, face_detector, lhm, cfg):
589
 
590
  os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
591
 
592
- return rgb, dump_image_path, dump_video_path
593
-
594
- def core_fn_export(image, video_params, working_dir):
595
- rgb, dump_image_path, dump_video_path = core_fn(image=image, video_params=video_params, working_dir=working_dir)
596
- print("start to export the video.")
597
  images_to_video(
598
  rgb,
599
  output_path=dump_video_path,
@@ -601,8 +596,22 @@ def demo_lhm(pose_estimator, face_detector, lhm, cfg):
601
  gradio_codec=False,
602
  verbose=True,
603
  )
604
-
605
  return dump_image_path, dump_video_path
 
 
 
 
 
 
 
 
 
 
 
 
 
 
606
 
607
  _TITLE = '''LHM: Large Animatable Human Model'''
608
 
@@ -728,7 +737,7 @@ def demo_lhm(pose_estimator, face_detector, lhm, cfg):
728
  outputs=[working_dir],
729
  queue=False,
730
  ).success(
731
- fn=core_fn_export,
732
  inputs=[input_image, video_input, working_dir], # video_params refer to smpl dir
733
  outputs=[processed_image, output_video],
734
  )
@@ -771,17 +780,7 @@ def launch_gradio_app():
771
 
772
  demo_lhm(pose_estimator, facedetector, lhm, cfg)
773
 
774
-
775
-
776
  if __name__ == '__main__':
777
  launch_pretrained()
778
  # launch_env_not_compile_with_cuda()
779
- launch_gradio_app()
780
-
781
- # import gradio as gr
782
-
783
- # def greet(name):
784
- # return "Hello " + name + "!!"
785
-
786
- # demo = gr.Interface(fn=greet, inputs="text", outputs="text")
787
- # demo.launch()
 
589
 
590
  os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
591
 
 
 
 
 
 
592
  images_to_video(
593
  rgb,
594
  output_path=dump_video_path,
 
596
  gradio_codec=False,
597
  verbose=True,
598
  )
599
+
600
  return dump_image_path, dump_video_path
601
+ # return rgb, dump_image_path, dump_video_path
602
+
603
+ # def core_fn_export(image, video_params, working_dir):
604
+ # rgb, dump_image_path, dump_video_path = core_fn(image=image, video_params=video_params, working_dir=working_dir)
605
+ # print("start to export the video.")
606
+ # images_to_video(
607
+ # rgb,
608
+ # output_path=dump_video_path,
609
+ # fps=30,
610
+ # gradio_codec=False,
611
+ # verbose=True,
612
+ # )
613
+
614
+ # return dump_image_path, dump_video_path
615
 
616
  _TITLE = '''LHM: Large Animatable Human Model'''
617
 
 
737
  outputs=[working_dir],
738
  queue=False,
739
  ).success(
740
+ fn=core_fn,
741
  inputs=[input_image, video_input, working_dir], # video_params refer to smpl dir
742
  outputs=[processed_image, output_video],
743
  )
 
780
 
781
  demo_lhm(pose_estimator, facedetector, lhm, cfg)
782
 
 
 
783
  if __name__ == '__main__':
784
  launch_pretrained()
785
  # launch_env_not_compile_with_cuda()
786
+ launch_gradio_app()