Spaces:
Running
on
Zero
Running
on
Zero
to fix gs error
Browse files
LHM/models/rendering/__pycache__/gs_renderer.cpython-310.pyc
CHANGED
Binary files a/LHM/models/rendering/__pycache__/gs_renderer.cpython-310.pyc and b/LHM/models/rendering/__pycache__/gs_renderer.cpython-310.pyc differ
|
|
LHM/models/rendering/gs_renderer.py
CHANGED
@@ -818,7 +818,7 @@ class GS3DRenderer(nn.Module):
|
|
818 |
def hyper_step(self, step):
|
819 |
self.gs_net.hyper_step(step)
|
820 |
|
821 |
-
|
822 |
def forward_single_view(
|
823 |
self,
|
824 |
gs: GaussianModel,
|
@@ -829,14 +829,14 @@ class GS3DRenderer(nn.Module):
|
|
829 |
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
|
830 |
screenspace_points = (
|
831 |
torch.zeros_like(
|
832 |
-
gs.xyz, dtype=gs.xyz.dtype, requires_grad=
|
833 |
)
|
834 |
+ 0
|
835 |
)
|
836 |
-
try:
|
837 |
-
|
838 |
-
except:
|
839 |
-
|
840 |
|
841 |
bg_color = background_color
|
842 |
# Set up rasterization configuration
|
@@ -877,23 +877,25 @@ class GS3DRenderer(nn.Module):
|
|
877 |
shs = None
|
878 |
colors_precomp = None
|
879 |
if self.gs_net.use_rgb:
|
880 |
-
colors_precomp = gs.shs.squeeze(1)
|
881 |
shs = None
|
882 |
else:
|
883 |
colors_precomp = None
|
884 |
-
shs = gs.shs
|
885 |
|
886 |
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
887 |
# NOTE that dadong tries to regress rgb not shs
|
888 |
# with torch.autocast(device_type=self.device.type, dtype=torch.float32):
|
|
|
|
|
889 |
rendered_image, radii, rendered_depth, rendered_alpha = rasterizer(
|
890 |
-
means3D=means3D
|
891 |
-
means2D=means2D
|
892 |
shs=shs,
|
893 |
colors_precomp=colors_precomp,
|
894 |
-
opacities=opacity
|
895 |
-
scales=scales
|
896 |
-
rotations=rotations
|
897 |
cov3D_precomp=cov3D_precomp,
|
898 |
)
|
899 |
|
@@ -1322,7 +1324,7 @@ class GS3DRenderer(nn.Module):
|
|
1322 |
gs_attr_list.append(gs_attr)
|
1323 |
|
1324 |
return gs_attr_list, query_points, smplx_data
|
1325 |
-
|
1326 |
def forward_animate_gs(
|
1327 |
self,
|
1328 |
gs_attr_list,
|
|
|
818 |
def hyper_step(self, step):
|
819 |
self.gs_net.hyper_step(step)
|
820 |
|
821 |
+
|
822 |
def forward_single_view(
|
823 |
self,
|
824 |
gs: GaussianModel,
|
|
|
829 |
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
|
830 |
screenspace_points = (
|
831 |
torch.zeros_like(
|
832 |
+
gs.xyz, dtype=gs.xyz.dtype, requires_grad=False, device=self.device
|
833 |
)
|
834 |
+ 0
|
835 |
)
|
836 |
+
# try:
|
837 |
+
# screenspace_points.retain_grad()
|
838 |
+
# except:
|
839 |
+
# pass
|
840 |
|
841 |
bg_color = background_color
|
842 |
# Set up rasterization configuration
|
|
|
877 |
shs = None
|
878 |
colors_precomp = None
|
879 |
if self.gs_net.use_rgb:
|
880 |
+
colors_precomp = gs.shs.squeeze(1)
|
881 |
shs = None
|
882 |
else:
|
883 |
colors_precomp = None
|
884 |
+
shs = gs.shs
|
885 |
|
886 |
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
887 |
# NOTE that dadong tries to regress rgb not shs
|
888 |
# with torch.autocast(device_type=self.device.type, dtype=torch.float32):
|
889 |
+
print(means3D.device, means2D.device, colors_precomp.device, opacity.device, rotations.device, self.device)
|
890 |
+
print(means3D.dtype, means2D.dtype, colors_precomp.dtype)
|
891 |
rendered_image, radii, rendered_depth, rendered_alpha = rasterizer(
|
892 |
+
means3D=means3D,
|
893 |
+
means2D=means2D,
|
894 |
shs=shs,
|
895 |
colors_precomp=colors_precomp,
|
896 |
+
opacities=opacity,
|
897 |
+
scales=scales,
|
898 |
+
rotations=rotations,
|
899 |
cov3D_precomp=cov3D_precomp,
|
900 |
)
|
901 |
|
|
|
1324 |
gs_attr_list.append(gs_attr)
|
1325 |
|
1326 |
return gs_attr_list, query_points, smplx_data
|
1327 |
+
|
1328 |
def forward_animate_gs(
|
1329 |
self,
|
1330 |
gs_attr_list,
|
app.py
CHANGED
@@ -13,772 +13,772 @@
|
|
13 |
# limitations under the License.
|
14 |
|
15 |
|
16 |
-
import os
|
17 |
-
os.system("rm -rf /data-nvme/zerogpu-offload/")
|
18 |
-
import cv2
|
19 |
-
import time
|
20 |
-
from PIL import Image
|
21 |
-
import numpy as np
|
22 |
-
import gradio as gr
|
23 |
-
import base64
|
24 |
-
import spaces
|
25 |
-
import torch
|
26 |
-
torch._dynamo.config.disable = True
|
27 |
-
import subprocess
|
28 |
-
import os
|
29 |
-
import argparse
|
30 |
-
from omegaconf import OmegaConf
|
31 |
-
from rembg import remove
|
32 |
-
from engine.pose_estimation.pose_estimator import PoseEstimator
|
33 |
-
from LHM.utils.face_detector import VGGHeadDetector
|
34 |
-
from LHM.utils.hf_hub import wrap_model_hub
|
35 |
-
from LHM.runners.infer.utils import (
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
)
|
41 |
-
from engine.SegmentAPI.base import Bbox
|
42 |
-
|
43 |
-
def get_bbox(mask):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
def infer_preprocess_image(
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
):
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
def parse_configs():
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
def _build_model(cfg):
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
def launch_pretrained():
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
def launch_env_not_compile_with_cuda():
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
def animation_infer(renderer, gs_model_list, query_points, smplx_params, render_c2ws, render_intrs, render_bg_colors):
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
def assert_input_image(input_image):
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
def prepare_working_dir():
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
def init_preprocessor():
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool, working_dir):
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
def get_image_base64(path):
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
def demo_lhm(pose_estimator, face_detector, lhm, cfg):
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
|
363 |
-
|
364 |
-
|
365 |
|
366 |
-
|
367 |
-
|
368 |
|
369 |
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
|
380 |
-
|
381 |
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
|
778 |
-
|
779 |
|
780 |
-
|
781 |
-
|
782 |
|
783 |
-
|
784 |
-
|
|
|
13 |
# limitations under the License.
|
14 |
|
15 |
|
16 |
+
# import os
|
17 |
+
# os.system("rm -rf /data-nvme/zerogpu-offload/")
|
18 |
+
# import cv2
|
19 |
+
# import time
|
20 |
+
# from PIL import Image
|
21 |
+
# import numpy as np
|
22 |
+
# import gradio as gr
|
23 |
+
# import base64
|
24 |
+
# import spaces
|
25 |
+
# import torch
|
26 |
+
# torch._dynamo.config.disable = True
|
27 |
+
# import subprocess
|
28 |
+
# import os
|
29 |
+
# import argparse
|
30 |
+
# from omegaconf import OmegaConf
|
31 |
+
# from rembg import remove
|
32 |
+
# from engine.pose_estimation.pose_estimator import PoseEstimator
|
33 |
+
# from LHM.utils.face_detector import VGGHeadDetector
|
34 |
+
# from LHM.utils.hf_hub import wrap_model_hub
|
35 |
+
# from LHM.runners.infer.utils import (
|
36 |
+
# calc_new_tgt_size_by_aspect,
|
37 |
+
# center_crop_according_to_mask,
|
38 |
+
# prepare_motion_seqs,
|
39 |
+
# resize_image_keepaspect_np,
|
40 |
+
# )
|
41 |
+
# from engine.SegmentAPI.base import Bbox
|
42 |
+
|
43 |
+
# def get_bbox(mask):
|
44 |
+
# height, width = mask.shape
|
45 |
+
# pha = mask / 255.0
|
46 |
+
# pha[pha < 0.5] = 0.0
|
47 |
+
# pha[pha >= 0.5] = 1.0
|
48 |
+
|
49 |
+
# # obtain bbox
|
50 |
+
# _h, _w = np.where(pha == 1)
|
51 |
+
|
52 |
+
# whwh = [
|
53 |
+
# _w.min().item(),
|
54 |
+
# _h.min().item(),
|
55 |
+
# _w.max().item(),
|
56 |
+
# _h.max().item(),
|
57 |
+
# ]
|
58 |
+
|
59 |
+
# box = Bbox(whwh)
|
60 |
+
|
61 |
+
# # scale box to 1.05
|
62 |
+
# scale_box = box.scale(1.1, width=width, height=height)
|
63 |
+
# return scale_box
|
64 |
+
|
65 |
+
# def infer_preprocess_image(
|
66 |
+
# rgb_path,
|
67 |
+
# mask,
|
68 |
+
# intr,
|
69 |
+
# pad_ratio,
|
70 |
+
# bg_color,
|
71 |
+
# max_tgt_size,
|
72 |
+
# aspect_standard,
|
73 |
+
# enlarge_ratio,
|
74 |
+
# render_tgt_size,
|
75 |
+
# multiply,
|
76 |
+
# need_mask=True,
|
77 |
+
# ):
|
78 |
+
# """inferece
|
79 |
+
# image, _, _ = preprocess_image(image_path, mask_path=None, intr=None, pad_ratio=0, bg_color=1.0,
|
80 |
+
# max_tgt_size=896, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1.0],
|
81 |
+
# render_tgt_size=source_size, multiply=14, need_mask=True)
|
82 |
+
|
83 |
+
# """
|
84 |
+
|
85 |
+
# rgb = np.array(Image.open(rgb_path))
|
86 |
+
# rgb_raw = rgb.copy()
|
87 |
+
|
88 |
+
# bbox = get_bbox(mask)
|
89 |
+
# bbox_list = bbox.get_box()
|
90 |
+
|
91 |
+
# rgb = rgb[bbox_list[1] : bbox_list[3], bbox_list[0] : bbox_list[2]]
|
92 |
+
# mask = mask[bbox_list[1] : bbox_list[3], bbox_list[0] : bbox_list[2]]
|
93 |
+
|
94 |
+
# h, w, _ = rgb.shape
|
95 |
+
# assert w < h
|
96 |
+
# cur_ratio = h / w
|
97 |
+
# scale_ratio = cur_ratio / aspect_standard
|
98 |
+
|
99 |
+
# target_w = int(min(w * scale_ratio, h))
|
100 |
+
# offset_w = (target_w - w) // 2
|
101 |
+
# # resize to target ratio.
|
102 |
+
# if offset_w > 0:
|
103 |
+
# rgb = np.pad(
|
104 |
+
# rgb,
|
105 |
+
# ((0, 0), (offset_w, offset_w), (0, 0)),
|
106 |
+
# mode="constant",
|
107 |
+
# constant_values=255,
|
108 |
+
# )
|
109 |
+
# mask = np.pad(
|
110 |
+
# mask,
|
111 |
+
# ((0, 0), (offset_w, offset_w)),
|
112 |
+
# mode="constant",
|
113 |
+
# constant_values=0,
|
114 |
+
# )
|
115 |
+
# else:
|
116 |
+
# offset_w = -offset_w
|
117 |
+
# rgb = rgb[:,offset_w:-offset_w,:]
|
118 |
+
# mask = mask[:,offset_w:-offset_w]
|
119 |
+
|
120 |
+
# # resize to target ratio.
|
121 |
+
|
122 |
+
# rgb = np.pad(
|
123 |
+
# rgb,
|
124 |
+
# ((0, 0), (offset_w, offset_w), (0, 0)),
|
125 |
+
# mode="constant",
|
126 |
+
# constant_values=255,
|
127 |
+
# )
|
128 |
+
|
129 |
+
# mask = np.pad(
|
130 |
+
# mask,
|
131 |
+
# ((0, 0), (offset_w, offset_w)),
|
132 |
+
# mode="constant",
|
133 |
+
# constant_values=0,
|
134 |
+
# )
|
135 |
+
|
136 |
+
# rgb = rgb / 255.0 # normalize to [0, 1]
|
137 |
+
# mask = mask / 255.0
|
138 |
+
|
139 |
+
# mask = (mask > 0.5).astype(np.float32)
|
140 |
+
# rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None])
|
141 |
+
|
142 |
+
# # resize to specific size require by preprocessor of smplx-estimator.
|
143 |
+
# rgb = resize_image_keepaspect_np(rgb, max_tgt_size)
|
144 |
+
# mask = resize_image_keepaspect_np(mask, max_tgt_size)
|
145 |
+
|
146 |
+
# # crop image to enlarge human area.
|
147 |
+
# rgb, mask, offset_x, offset_y = center_crop_according_to_mask(
|
148 |
+
# rgb, mask, aspect_standard, enlarge_ratio
|
149 |
+
# )
|
150 |
+
# if intr is not None:
|
151 |
+
# intr[0, 2] -= offset_x
|
152 |
+
# intr[1, 2] -= offset_y
|
153 |
+
|
154 |
+
# # resize to render_tgt_size for training
|
155 |
+
|
156 |
+
# tgt_hw_size, ratio_y, ratio_x = calc_new_tgt_size_by_aspect(
|
157 |
+
# cur_hw=rgb.shape[:2],
|
158 |
+
# aspect_standard=aspect_standard,
|
159 |
+
# tgt_size=render_tgt_size,
|
160 |
+
# multiply=multiply,
|
161 |
+
# )
|
162 |
+
|
163 |
+
# rgb = cv2.resize(
|
164 |
+
# rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA
|
165 |
+
# )
|
166 |
+
# mask = cv2.resize(
|
167 |
+
# mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA
|
168 |
+
# )
|
169 |
+
|
170 |
+
# if intr is not None:
|
171 |
+
|
172 |
+
# # ******************** Merge *********************** #
|
173 |
+
# intr = scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y)
|
174 |
+
# assert (
|
175 |
+
# abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5
|
176 |
+
# ), f"{intr[0, 2] * 2}, {rgb.shape[1]}"
|
177 |
+
# assert (
|
178 |
+
# abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5
|
179 |
+
# ), f"{intr[1, 2] * 2}, {rgb.shape[0]}"
|
180 |
+
|
181 |
+
# # ******************** Merge *********************** #
|
182 |
+
# intr[0, 2] = rgb.shape[1] // 2
|
183 |
+
# intr[1, 2] = rgb.shape[0] // 2
|
184 |
+
|
185 |
+
# rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0) # [1, 3, H, W]
|
186 |
+
# mask = (
|
187 |
+
# torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0)
|
188 |
+
# ) # [1, 1, H, W]
|
189 |
+
# return rgb, mask, intr
|
190 |
+
|
191 |
+
# def parse_configs():
|
192 |
+
|
193 |
+
# parser = argparse.ArgumentParser()
|
194 |
+
# parser.add_argument("--config", type=str)
|
195 |
+
# parser.add_argument("--infer", type=str)
|
196 |
+
# args, unknown = parser.parse_known_args()
|
197 |
+
|
198 |
+
# cfg = OmegaConf.create()
|
199 |
+
# cli_cfg = OmegaConf.from_cli(unknown)
|
200 |
+
|
201 |
+
# # parse from ENV
|
202 |
+
# if os.environ.get("APP_INFER") is not None:
|
203 |
+
# args.infer = os.environ.get("APP_INFER")
|
204 |
+
# if os.environ.get("APP_MODEL_NAME") is not None:
|
205 |
+
# cli_cfg.model_name = os.environ.get("APP_MODEL_NAME")
|
206 |
+
|
207 |
+
# args.config = args.infer if args.config is None else args.config
|
208 |
+
|
209 |
+
# if args.config is not None:
|
210 |
+
# cfg_train = OmegaConf.load(args.config)
|
211 |
+
# cfg.source_size = cfg_train.dataset.source_image_res
|
212 |
+
# try:
|
213 |
+
# cfg.src_head_size = cfg_train.dataset.src_head_size
|
214 |
+
# except:
|
215 |
+
# cfg.src_head_size = 112
|
216 |
+
# cfg.render_size = cfg_train.dataset.render_image.high
|
217 |
+
# _relative_path = os.path.join(
|
218 |
+
# cfg_train.experiment.parent,
|
219 |
+
# cfg_train.experiment.child,
|
220 |
+
# os.path.basename(cli_cfg.model_name).split("_")[-1],
|
221 |
+
# )
|
222 |
+
|
223 |
+
# cfg.save_tmp_dump = os.path.join("exps", "save_tmp", _relative_path)
|
224 |
+
# cfg.image_dump = os.path.join("exps", "images", _relative_path)
|
225 |
+
# cfg.video_dump = os.path.join("exps", "videos", _relative_path) # output path
|
226 |
+
|
227 |
+
# if args.infer is not None:
|
228 |
+
# cfg_infer = OmegaConf.load(args.infer)
|
229 |
+
# cfg.merge_with(cfg_infer)
|
230 |
+
# cfg.setdefault(
|
231 |
+
# "save_tmp_dump", os.path.join("exps", cli_cfg.model_name, "save_tmp")
|
232 |
+
# )
|
233 |
+
# cfg.setdefault("image_dump", os.path.join("exps", cli_cfg.model_name, "images"))
|
234 |
+
# cfg.setdefault(
|
235 |
+
# "video_dump", os.path.join("dumps", cli_cfg.model_name, "videos")
|
236 |
+
# )
|
237 |
+
# cfg.setdefault("mesh_dump", os.path.join("dumps", cli_cfg.model_name, "meshes"))
|
238 |
+
|
239 |
+
# cfg.motion_video_read_fps = 6
|
240 |
+
# cfg.merge_with(cli_cfg)
|
241 |
+
|
242 |
+
# cfg.setdefault("logger", "INFO")
|
243 |
+
|
244 |
+
# assert cfg.model_name is not None, "model_name is required"
|
245 |
+
|
246 |
+
# return cfg, cfg_train
|
247 |
+
|
248 |
+
# def _build_model(cfg):
|
249 |
+
# from LHM.models import model_dict
|
250 |
+
|
251 |
+
# hf_model_cls = wrap_model_hub(model_dict["human_lrm_sapdino_bh_sd3_5"])
|
252 |
+
# model = hf_model_cls.from_pretrained(cfg.model_name)
|
253 |
+
|
254 |
+
# return model
|
255 |
+
|
256 |
+
# def launch_pretrained():
|
257 |
+
# from huggingface_hub import snapshot_download, hf_hub_download
|
258 |
+
# hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='assets.tar', local_dir="./")
|
259 |
+
# os.system("tar -xvf assets.tar && rm assets.tar")
|
260 |
+
# hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='LHM-0.5B.tar', local_dir="./")
|
261 |
+
# os.system("tar -xvf LHM-0.5B.tar && rm LHM-0.5B.tar")
|
262 |
+
# hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='LHM_prior_model.tar', local_dir="./")
|
263 |
+
# os.system("tar -xvf LHM_prior_model.tar && rm LHM_prior_model.tar")
|
264 |
+
|
265 |
+
# def launch_env_not_compile_with_cuda():
|
266 |
+
# os.system("pip install chumpy")
|
267 |
+
# os.system("pip uninstall -y basicsr")
|
268 |
+
# os.system("pip install git+https://github.com/hitsz-zuoqi/BasicSR/")
|
269 |
+
# # os.system("pip install -e ./third_party/sam2")
|
270 |
+
# os.system("pip install numpy==1.23.0")
|
271 |
+
# # os.system("pip install git+https://github.com/hitsz-zuoqi/sam2/")
|
272 |
+
# # os.system("pip install git+https://github.com/ashawkey/diff-gaussian-rasterization/")
|
273 |
+
# # os.system("pip install git+https://github.com/camenduru/simple-knn/")
|
274 |
+
# os.system("pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt251/download.html")
|
275 |
+
|
276 |
+
|
277 |
+
# def animation_infer(renderer, gs_model_list, query_points, smplx_params, render_c2ws, render_intrs, render_bg_colors):
|
278 |
+
# '''Inference code avoid repeat forward.
|
279 |
+
# '''
|
280 |
+
# render_h, render_w = int(render_intrs[0, 0, 1, 2] * 2), int(
|
281 |
+
# render_intrs[0, 0, 0, 2] * 2
|
282 |
+
# )
|
283 |
+
# # render target views
|
284 |
+
# render_res_list = []
|
285 |
+
# num_views = render_c2ws.shape[1]
|
286 |
+
# start_time = time.time()
|
287 |
+
|
288 |
+
# # render target views
|
289 |
+
# render_res_list = []
|
290 |
+
|
291 |
+
# for view_idx in range(num_views):
|
292 |
+
# render_res = renderer.forward_animate_gs(
|
293 |
+
# gs_model_list,
|
294 |
+
# query_points,
|
295 |
+
# renderer.get_single_view_smpl_data(smplx_params, view_idx),
|
296 |
+
# render_c2ws[:, view_idx : view_idx + 1],
|
297 |
+
# render_intrs[:, view_idx : view_idx + 1],
|
298 |
+
# render_h,
|
299 |
+
# render_w,
|
300 |
+
# render_bg_colors[:, view_idx : view_idx + 1],
|
301 |
+
# )
|
302 |
+
# render_res_list.append(render_res)
|
303 |
+
# print(
|
304 |
+
# f"time elpased(animate gs model per frame):{(time.time() - start_time)/num_views}"
|
305 |
+
# )
|
306 |
+
|
307 |
+
# out = defaultdict(list)
|
308 |
+
# for res in render_res_list:
|
309 |
+
# for k, v in res.items():
|
310 |
+
# if isinstance(v[0], torch.Tensor):
|
311 |
+
# out[k].append(v.detach().cpu())
|
312 |
+
# else:
|
313 |
+
# out[k].append(v)
|
314 |
+
# for k, v in out.items():
|
315 |
+
# # print(f"out key:{k}")
|
316 |
+
# if isinstance(v[0], torch.Tensor):
|
317 |
+
# out[k] = torch.concat(v, dim=1)
|
318 |
+
# if k in ["comp_rgb", "comp_mask", "comp_depth"]:
|
319 |
+
# out[k] = out[k][0].permute(
|
320 |
+
# 0, 2, 3, 1
|
321 |
+
# ) # [1, Nv, 3, H, W] -> [Nv, 3, H, W] - > [Nv, H, W, 3]
|
322 |
+
# else:
|
323 |
+
# out[k] = v
|
324 |
+
# return out
|
325 |
+
|
326 |
+
# def assert_input_image(input_image):
|
327 |
+
# if input_image is None:
|
328 |
+
# raise gr.Error("No image selected or uploaded!")
|
329 |
+
|
330 |
+
# def prepare_working_dir():
|
331 |
+
# import tempfile
|
332 |
+
# working_dir = tempfile.TemporaryDirectory()
|
333 |
+
# return working_dir
|
334 |
+
|
335 |
+
# def init_preprocessor():
|
336 |
+
# from LHM.utils.preprocess import Preprocessor
|
337 |
+
# global preprocessor
|
338 |
+
# preprocessor = Preprocessor()
|
339 |
+
|
340 |
+
# def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool, working_dir):
|
341 |
+
# image_raw = os.path.join(working_dir.name, "raw.png")
|
342 |
+
# with Image.fromarray(image_in) as img:
|
343 |
+
# img.save(image_raw)
|
344 |
+
# image_out = os.path.join(working_dir.name, "rembg.png")
|
345 |
+
# success = preprocessor.preprocess(image_path=image_raw, save_path=image_out, rmbg=remove_bg, recenter=recenter)
|
346 |
+
# assert success, f"Failed under preprocess_fn!"
|
347 |
+
# return image_out
|
348 |
+
|
349 |
+
# def get_image_base64(path):
|
350 |
+
# with open(path, "rb") as image_file:
|
351 |
+
# encoded_string = base64.b64encode(image_file.read()).decode()
|
352 |
+
# return f"data:image/png;base64,{encoded_string}"
|
353 |
+
|
354 |
+
|
355 |
+
# def demo_lhm(pose_estimator, face_detector, lhm, cfg):
|
356 |
+
|
357 |
+
# @spaces.GPU
|
358 |
+
# def core_fn(image: str, video_params, working_dir):
|
359 |
+
# image_raw = os.path.join(working_dir.name, "raw.png")
|
360 |
+
# with Image.fromarray(image) as img:
|
361 |
+
# img.save(image_raw)
|
362 |
|
363 |
+
# base_vid = os.path.basename(video_params).split("_")[0]
|
364 |
+
# smplx_params_dir = os.path.join("./assets/sample_motion", base_vid, "smplx_params")
|
365 |
|
366 |
+
# dump_video_path = os.path.join(working_dir.name, "output.mp4")
|
367 |
+
# dump_image_path = os.path.join(working_dir.name, "output.png")
|
368 |
|
369 |
|
370 |
+
# # prepare dump paths
|
371 |
+
# omit_prefix = os.path.dirname(image_raw)
|
372 |
+
# image_name = os.path.basename(image_raw)
|
373 |
+
# uid = image_name.split(".")[0]
|
374 |
+
# subdir_path = os.path.dirname(image_raw).replace(omit_prefix, "")
|
375 |
+
# subdir_path = (
|
376 |
+
# subdir_path[1:] if subdir_path.startswith("/") else subdir_path
|
377 |
+
# )
|
378 |
+
# print("subdir_path and uid:", subdir_path, uid)
|
379 |
|
380 |
+
# motion_seqs_dir = smplx_params_dir
|
381 |
|
382 |
+
# motion_name = os.path.dirname(
|
383 |
+
# motion_seqs_dir[:-1] if motion_seqs_dir[-1] == "/" else motion_seqs_dir
|
384 |
+
# )
|
385 |
+
|
386 |
+
# motion_name = os.path.basename(motion_name)
|
387 |
+
|
388 |
+
# dump_image_dir = os.path.dirname(dump_image_path)
|
389 |
+
# os.makedirs(dump_image_dir, exist_ok=True)
|
390 |
+
|
391 |
+
# print(image_raw, motion_seqs_dir, dump_image_dir, dump_video_path)
|
392 |
+
|
393 |
+
# dump_tmp_dir = dump_image_dir
|
394 |
+
|
395 |
+
# shape_pose = pose_estimator(image_raw)
|
396 |
+
# assert shape_pose.is_full_body, f"The input image is illegal, {shape_pose.msg}"
|
397 |
+
|
398 |
+
# if os.path.exists(dump_video_path):
|
399 |
+
# return dump_image_path, dump_video_path
|
400 |
+
# source_size = cfg.source_size
|
401 |
+
# render_size = cfg.render_size
|
402 |
+
# render_fps = 30
|
403 |
+
|
404 |
+
# aspect_standard = 5.0 / 3
|
405 |
+
# motion_img_need_mask = cfg.get("motion_img_need_mask", False) # False
|
406 |
+
# vis_motion = cfg.get("vis_motion", False) # False
|
407 |
+
|
408 |
+
|
409 |
+
# input_np = cv2.imread(image_raw)
|
410 |
+
# output_np = remove(input_np)
|
411 |
+
# # cv2.imwrite("./vis.png", output_np)
|
412 |
+
# parsing_mask = output_np[:,:,3]
|
413 |
+
|
414 |
+
# # prepare reference image
|
415 |
+
# image, _, _ = infer_preprocess_image(
|
416 |
+
# image_raw,
|
417 |
+
# mask=parsing_mask,
|
418 |
+
# intr=None,
|
419 |
+
# pad_ratio=0,
|
420 |
+
# bg_color=1.0,
|
421 |
+
# max_tgt_size=896,
|
422 |
+
# aspect_standard=aspect_standard,
|
423 |
+
# enlarge_ratio=[1.0, 1.0],
|
424 |
+
# render_tgt_size=source_size,
|
425 |
+
# multiply=14,
|
426 |
+
# need_mask=True,
|
427 |
+
# )
|
428 |
+
|
429 |
+
# try:
|
430 |
+
# rgb = np.array(Image.open(image_path))
|
431 |
+
# rgb = torch.from_numpy(rgb).permute(2, 0, 1)
|
432 |
+
# bbox = face_detector.detect_face(rgb)
|
433 |
+
# head_rgb = rgb[:, int(bbox[1]) : int(bbox[3]), int(bbox[0]) : int(bbox[2])]
|
434 |
+
# head_rgb = head_rgb.permute(1, 2, 0)
|
435 |
+
# src_head_rgb = head_rgb.cpu().numpy()
|
436 |
+
# except:
|
437 |
+
# print("w/o head input!")
|
438 |
+
# src_head_rgb = np.zeros((112, 112, 3), dtype=np.uint8)
|
439 |
+
|
440 |
+
# # resize to dino size
|
441 |
+
# try:
|
442 |
+
# src_head_rgb = cv2.resize(
|
443 |
+
# src_head_rgb,
|
444 |
+
# dsize=(cfg.src_head_size, cfg.src_head_size),
|
445 |
+
# interpolation=cv2.INTER_AREA,
|
446 |
+
# ) # resize to dino size
|
447 |
+
# except:
|
448 |
+
# src_head_rgb = np.zeros(
|
449 |
+
# (cfg.src_head_size, cfg.src_head_size, 3), dtype=np.uint8
|
450 |
+
# )
|
451 |
+
|
452 |
+
# src_head_rgb = (
|
453 |
+
# torch.from_numpy(src_head_rgb / 255.0).float().permute(2, 0, 1).unsqueeze(0)
|
454 |
+
# ) # [1, 3, H, W]
|
455 |
+
|
456 |
+
# save_ref_img_path = os.path.join(
|
457 |
+
# dump_tmp_dir, "output.png"
|
458 |
+
# )
|
459 |
+
# vis_ref_img = (image[0].permute(1, 2, 0).cpu().detach().numpy() * 255).astype(
|
460 |
+
# np.uint8
|
461 |
+
# )
|
462 |
+
# Image.fromarray(vis_ref_img).save(save_ref_img_path)
|
463 |
+
|
464 |
+
# # read motion seq
|
465 |
+
# motion_name = os.path.dirname(
|
466 |
+
# motion_seqs_dir[:-1] if motion_seqs_dir[-1] == "/" else motion_seqs_dir
|
467 |
+
# )
|
468 |
+
# motion_name = os.path.basename(motion_name)
|
469 |
+
|
470 |
+
# motion_seq = prepare_motion_seqs(
|
471 |
+
# motion_seqs_dir,
|
472 |
+
# None,
|
473 |
+
# save_root=dump_tmp_dir,
|
474 |
+
# fps=30,
|
475 |
+
# bg_color=1.0,
|
476 |
+
# aspect_standard=aspect_standard,
|
477 |
+
# enlarge_ratio=[1.0, 1, 0],
|
478 |
+
# render_image_res=render_size,
|
479 |
+
# multiply=16,
|
480 |
+
# need_mask=motion_img_need_mask,
|
481 |
+
# vis_motion=vis_motion,
|
482 |
+
# )
|
483 |
+
|
484 |
+
# camera_size = len(motion_seq["motion_seqs"])
|
485 |
+
# shape_param = shape_pose.beta
|
486 |
+
|
487 |
+
# device = "cuda"
|
488 |
+
# dtype = torch.float32
|
489 |
+
# shape_param = torch.tensor(shape_param, dtype=dtype).unsqueeze(0)
|
490 |
+
|
491 |
+
# lhm.to(dtype)
|
492 |
+
|
493 |
+
# smplx_params = motion_seq['smplx_params']
|
494 |
+
# smplx_params['betas'] = shape_param.to(device)
|
495 |
+
|
496 |
+
# gs_model_list, query_points, transform_mat_neutral_pose = lhm.infer_single_view(
|
497 |
+
# image.unsqueeze(0).to(device, dtype),
|
498 |
+
# src_head_rgb.unsqueeze(0).to(device, dtype),
|
499 |
+
# None,
|
500 |
+
# None,
|
501 |
+
# render_c2ws=motion_seq["render_c2ws"].to(device),
|
502 |
+
# render_intrs=motion_seq["render_intrs"].to(device),
|
503 |
+
# render_bg_colors=motion_seq["render_bg_colors"].to(device),
|
504 |
+
# smplx_params={
|
505 |
+
# k: v.to(device) for k, v in smplx_params.items()
|
506 |
+
# },
|
507 |
+
# )
|
508 |
+
|
509 |
+
|
510 |
+
# # rendering !!!!
|
511 |
+
|
512 |
+
# start_time = time.time()
|
513 |
+
# batch_dict = dict()
|
514 |
+
# batch_size = 40 # avoid memeory out!
|
515 |
+
|
516 |
+
# for batch_i in range(0, camera_size, batch_size):
|
517 |
+
# with torch.no_grad():
|
518 |
+
# # TODO check device and dtype
|
519 |
+
# # dict_keys(['comp_rgb', 'comp_rgb_bg', 'comp_mask', 'comp_depth', '3dgs'])
|
520 |
+
# keys = [
|
521 |
+
# "root_pose",
|
522 |
+
# "body_pose",
|
523 |
+
# "jaw_pose",
|
524 |
+
# "leye_pose",
|
525 |
+
# "reye_pose",
|
526 |
+
# "lhand_pose",
|
527 |
+
# "rhand_pose",
|
528 |
+
# "trans",
|
529 |
+
# "focal",
|
530 |
+
# "princpt",
|
531 |
+
# "img_size_wh",
|
532 |
+
# "expr",
|
533 |
+
# ]
|
534 |
+
# batch_smplx_params = dict()
|
535 |
+
# batch_smplx_params["betas"] = shape_param.to(device)
|
536 |
+
# batch_smplx_params['transform_mat_neutral_pose'] = transform_mat_neutral_pose
|
537 |
+
# for key in keys:
|
538 |
+
# batch_smplx_params[key] = motion_seq["smplx_params"][key][
|
539 |
+
# :, batch_i : batch_i + batch_size
|
540 |
+
# ].to(device)
|
541 |
+
|
542 |
+
# res = lhm.animation_infer(gs_model_list, query_points, batch_smplx_params,
|
543 |
+
# render_c2ws=motion_seq["render_c2ws"][
|
544 |
+
# :, batch_i : batch_i + batch_size
|
545 |
+
# ].to(device),
|
546 |
+
# render_intrs=motion_seq["render_intrs"][
|
547 |
+
# :, batch_i : batch_i + batch_size
|
548 |
+
# ].to(device),
|
549 |
+
# render_bg_colors=motion_seq["render_bg_colors"][
|
550 |
+
# :, batch_i : batch_i + batch_size
|
551 |
+
# ].to(device),
|
552 |
+
# )
|
553 |
+
|
554 |
+
# for accumulate_key in ["comp_rgb", "comp_mask"]:
|
555 |
+
# if accumulate_key not in batch_dict:
|
556 |
+
# batch_dict[accumulate_key] = []
|
557 |
+
# batch_dict[accumulate_key].append(res[accumulate_key].detach().cpu())
|
558 |
+
# del res
|
559 |
+
# torch.cuda.empty_cache()
|
560 |
+
|
561 |
+
# for accumulate_key in ["comp_rgb", "comp_mask"]:
|
562 |
+
# batch_dict[accumulate_key] = torch.cat(batch_dict[accumulate_key], dim=0)
|
563 |
+
|
564 |
+
# print(f"time elapsed: {time.time() - start_time}")
|
565 |
+
# rgb = batch_dict["comp_rgb"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1
|
566 |
+
# mask = batch_dict["comp_mask"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1
|
567 |
+
# mask[mask < 0.5] = 0.0
|
568 |
+
|
569 |
+
# rgb = rgb * mask + (1 - mask) * 1
|
570 |
+
# rgb = np.clip(rgb * 255, 0, 255).astype(np.uint8)
|
571 |
+
|
572 |
+
# if vis_motion:
|
573 |
+
# # print(rgb.shape, motion_seq["vis_motion_render"].shape)
|
574 |
+
|
575 |
+
# vis_ref_img = np.tile(
|
576 |
+
# cv2.resize(vis_ref_img, (rgb[0].shape[1], rgb[0].shape[0]))[
|
577 |
+
# None, :, :, :
|
578 |
+
# ],
|
579 |
+
# (rgb.shape[0], 1, 1, 1),
|
580 |
+
# )
|
581 |
+
# rgb = np.concatenate(
|
582 |
+
# [rgb, motion_seq["vis_motion_render"], vis_ref_img], axis=2
|
583 |
+
# )
|
584 |
+
|
585 |
+
# os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
|
586 |
+
|
587 |
+
# images_to_video(
|
588 |
+
# rgb,
|
589 |
+
# output_path=dump_video_path,
|
590 |
+
# fps=render_fps,
|
591 |
+
# gradio_codec=False,
|
592 |
+
# verbose=True,
|
593 |
+
# )
|
594 |
+
|
595 |
+
# # self.infer_single(
|
596 |
+
# # image_path,
|
597 |
+
# # motion_seqs_dir=motion_seqs_dir,
|
598 |
+
# # motion_img_dir=None,
|
599 |
+
# # motion_video_read_fps=30,
|
600 |
+
# # export_video=False,
|
601 |
+
# # export_mesh=False,
|
602 |
+
# # dump_tmp_dir=dump_image_dir,
|
603 |
+
# # dump_image_dir=dump_image_dir,
|
604 |
+
# # dump_video_path=dump_video_path,
|
605 |
+
# # shape_param=shape_pose.beta,
|
606 |
+
# # )
|
607 |
+
|
608 |
+
# # status = spaces.GPU(infer_impl(
|
609 |
+
# # gradio_demo_image=image_raw,
|
610 |
+
# # gradio_motion_file=smplx_params_dir,
|
611 |
+
# # gradio_masked_image=dump_image_path,
|
612 |
+
# # gradio_video_save_path=dump_video_path
|
613 |
+
# # ))
|
614 |
+
|
615 |
+
# return dump_image_path, dump_video_path
|
616 |
+
# # if status:
|
617 |
+
# # return dump_image_path, dump_video_path
|
618 |
+
# # else:
|
619 |
+
# # return None, None
|
620 |
+
|
621 |
+
# _TITLE = '''LHM: Large Animatable Human Model'''
|
622 |
+
|
623 |
+
# _DESCRIPTION = '''
|
624 |
+
# <strong>Reconstruct a human avatar in 0.2 seconds with A100!</strong>
|
625 |
+
# '''
|
626 |
+
|
627 |
+
# with gr.Blocks(analytics_enabled=False) as demo:
|
628 |
+
|
629 |
+
# # </div>
|
630 |
+
# logo_url = "./assets/rgba_logo_new.png"
|
631 |
+
# logo_base64 = get_image_base64(logo_url)
|
632 |
+
# gr.HTML(
|
633 |
+
# f"""
|
634 |
+
# <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
635 |
+
# <div>
|
636 |
+
# <h1> <img src="{logo_base64}" style='height:35px; display:inline-block;'/> Large Animatable Human Model </h1>
|
637 |
+
# </div>
|
638 |
+
# </div>
|
639 |
+
# """
|
640 |
+
# )
|
641 |
+
# gr.HTML(
|
642 |
+
# """<p><h4 style="color: red;"> Notes: Please input full-body image in case of detection errors.</h4></p>"""
|
643 |
+
# )
|
644 |
+
|
645 |
+
# # DISPLAY
|
646 |
+
# with gr.Row():
|
647 |
+
|
648 |
+
# with gr.Column(variant='panel', scale=1):
|
649 |
+
# with gr.Tabs(elem_id="openlrm_input_image"):
|
650 |
+
# with gr.TabItem('Input Image'):
|
651 |
+
# with gr.Row():
|
652 |
+
# input_image = gr.Image(label="Input Image", image_mode="RGBA", height=480, width=270, sources="upload", type="numpy", elem_id="content_image")
|
653 |
+
# # EXAMPLES
|
654 |
+
# with gr.Row():
|
655 |
+
# examples = [
|
656 |
+
# ['assets/sample_input/joker.jpg'],
|
657 |
+
# ['assets/sample_input/anime.png'],
|
658 |
+
# ['assets/sample_input/basket.png'],
|
659 |
+
# ['assets/sample_input/ai_woman1.JPG'],
|
660 |
+
# ['assets/sample_input/anime2.JPG'],
|
661 |
+
# ['assets/sample_input/anime3.JPG'],
|
662 |
+
# ['assets/sample_input/boy1.png'],
|
663 |
+
# ['assets/sample_input/choplin.jpg'],
|
664 |
+
# ['assets/sample_input/eins.JPG'],
|
665 |
+
# ['assets/sample_input/girl1.png'],
|
666 |
+
# ['assets/sample_input/girl2.png'],
|
667 |
+
# ['assets/sample_input/robot.jpg'],
|
668 |
+
# ]
|
669 |
+
# gr.Examples(
|
670 |
+
# examples=examples,
|
671 |
+
# inputs=[input_image],
|
672 |
+
# examples_per_page=20,
|
673 |
+
# )
|
674 |
+
|
675 |
+
# with gr.Column():
|
676 |
+
# with gr.Tabs(elem_id="openlrm_input_video"):
|
677 |
+
# with gr.TabItem('Input Video'):
|
678 |
+
# with gr.Row():
|
679 |
+
# video_input = gr.Video(label="Input Video",height=480, width=270, interactive=False)
|
680 |
+
|
681 |
+
# examples = [
|
682 |
+
# # './assets/sample_motion/danaotiangong/danaotiangong_origin.mp4',
|
683 |
+
# './assets/sample_motion/ex5/ex5_origin.mp4',
|
684 |
+
# './assets/sample_motion/girl2/girl2_origin.mp4',
|
685 |
+
# './assets/sample_motion/jntm/jntm_origin.mp4',
|
686 |
+
# './assets/sample_motion/mimo1/mimo1_origin.mp4',
|
687 |
+
# './assets/sample_motion/mimo2/mimo2_origin.mp4',
|
688 |
+
# './assets/sample_motion/mimo4/mimo4_origin.mp4',
|
689 |
+
# './assets/sample_motion/mimo5/mimo5_origin.mp4',
|
690 |
+
# './assets/sample_motion/mimo6/mimo6_origin.mp4',
|
691 |
+
# './assets/sample_motion/nezha/nezha_origin.mp4',
|
692 |
+
# './assets/sample_motion/taiji/taiji_origin.mp4'
|
693 |
+
# ]
|
694 |
+
|
695 |
+
# gr.Examples(
|
696 |
+
# examples=examples,
|
697 |
+
# inputs=[video_input],
|
698 |
+
# examples_per_page=20,
|
699 |
+
# )
|
700 |
+
# with gr.Column(variant='panel', scale=1):
|
701 |
+
# with gr.Tabs(elem_id="openlrm_processed_image"):
|
702 |
+
# with gr.TabItem('Processed Image'):
|
703 |
+
# with gr.Row():
|
704 |
+
# processed_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", height=480, width=270, interactive=False)
|
705 |
+
|
706 |
+
# with gr.Column(variant='panel', scale=1):
|
707 |
+
# with gr.Tabs(elem_id="openlrm_render_video"):
|
708 |
+
# with gr.TabItem('Rendered Video'):
|
709 |
+
# with gr.Row():
|
710 |
+
# output_video = gr.Video(label="Rendered Video", format="mp4", height=480, width=270, autoplay=True)
|
711 |
+
|
712 |
+
# # SETTING
|
713 |
+
# with gr.Row():
|
714 |
+
# with gr.Column(variant='panel', scale=1):
|
715 |
+
# submit = gr.Button('Generate', elem_id="openlrm_generate", variant='primary')
|
716 |
+
|
717 |
+
|
718 |
+
# working_dir = gr.State()
|
719 |
+
# submit.click(
|
720 |
+
# fn=assert_input_image,
|
721 |
+
# inputs=[input_image],
|
722 |
+
# queue=False,
|
723 |
+
# ).success(
|
724 |
+
# fn=prepare_working_dir,
|
725 |
+
# outputs=[working_dir],
|
726 |
+
# queue=False,
|
727 |
+
# ).success(
|
728 |
+
# fn=core_fn,
|
729 |
+
# inputs=[input_image, video_input, working_dir], # video_params refer to smpl dir
|
730 |
+
# outputs=[processed_image, output_video],
|
731 |
+
# )
|
732 |
+
|
733 |
+
# demo.queue()
|
734 |
+
# demo.launch()
|
735 |
+
|
736 |
+
|
737 |
+
# def launch_gradio_app():
|
738 |
+
|
739 |
+
# os.environ.update({
|
740 |
+
# "APP_ENABLED": "1",
|
741 |
+
# "APP_MODEL_NAME": "./exps/releases/video_human_benchmark/human-lrm-500M/step_060000/",
|
742 |
+
# "APP_INFER": "./configs/inference/human-lrm-500M.yaml",
|
743 |
+
# "APP_TYPE": "infer.human_lrm",
|
744 |
+
# "NUMBA_THREADING_LAYER": 'omp',
|
745 |
+
# })
|
746 |
+
|
747 |
+
# # from LHM.runners import REGISTRY_RUNNERS
|
748 |
+
# # RunnerClass = REGISTRY_RUNNERS[os.getenv("APP_TYPE")]
|
749 |
+
# # with RunnerClass() as runner:
|
750 |
+
# # runner.to('cuda')
|
751 |
+
# # demo_lhm(infer_impl=runner.infer)
|
752 |
+
|
753 |
+
# facedetector = VGGHeadDetector(
|
754 |
+
# "./pretrained_models/gagatracker/vgghead/vgg_heads_l.trcd",
|
755 |
+
# device='cpu',
|
756 |
+
# )
|
757 |
+
# facedetector.to('cuda')
|
758 |
+
|
759 |
+
# pose_estimator = PoseEstimator(
|
760 |
+
# "./pretrained_models/human_model_files/", device='cpu'
|
761 |
+
# )
|
762 |
+
# pose_estimator.to('cuda')
|
763 |
+
# pose_estimator.device = 'cuda'
|
764 |
+
|
765 |
+
# cfg, cfg_train = parse_configs()
|
766 |
+
# lhm = _build_model(cfg)
|
767 |
+
# lhm.to('cuda')
|
768 |
+
|
769 |
+
# demo_lhm(pose_estimator, facedetector, lhm, cfg)
|
770 |
+
|
771 |
+
|
772 |
+
|
773 |
+
# if __name__ == '__main__':
|
774 |
+
# # launch_pretrained()
|
775 |
+
# # launch_env_not_compile_with_cuda()
|
776 |
+
# launch_gradio_app()
|
777 |
|
778 |
+
import gradio as gr
|
779 |
|
780 |
+
def greet(name):
|
781 |
+
return "Hello " + name + "!!"
|
782 |
|
783 |
+
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
784 |
+
demo.launch()
|
wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0f3184936fcc68139947905916039ddf5973c5e3c0bd2d4680565bf89934e22
|
3 |
+
size 3408819
|
wheels/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07408595ab166dfcc6cdd4422b8e94cb615abcf7c799ef0d43a66ad746f09373
|
3 |
+
size 3182640
|