Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import argparse | |
from glob import glob | |
from tqdm import tqdm | |
import cv2 | |
import torch | |
from dataset import MyData | |
from models.birefnet import BiRefNet, BiRefNetC2F | |
from utils import save_tensor_img, check_state_dict | |
from config import Config | |
config = Config() | |
def inference(model, data_loader_test, pred_root, method, testset, device=0): | |
model_training = model.training | |
if model_training: | |
model.eval() | |
for batch in tqdm(data_loader_test, total=len(data_loader_test)) if 1 or config.verbose_eval else data_loader_test: | |
inputs = batch[0].to(device) | |
# gts = batch[1].to(device) | |
label_paths = batch[-1] | |
with torch.no_grad(): | |
scaled_preds = model(inputs)[-1].sigmoid() | |
os.makedirs(os.path.join(pred_root, method, testset), exist_ok=True) | |
for idx_sample in range(scaled_preds.shape[0]): | |
res = torch.nn.functional.interpolate( | |
scaled_preds[idx_sample].unsqueeze(0), | |
size=cv2.imread(label_paths[idx_sample], cv2.IMREAD_GRAYSCALE).shape[:2], | |
mode='bilinear', | |
align_corners=True | |
) | |
save_tensor_img(res, os.path.join(os.path.join(pred_root, method, testset), label_paths[idx_sample].replace('\\', '/').split('/')[-1])) # test set dir + file name | |
if model_training: | |
model.train() | |
return None | |
def main(args): | |
# Init model | |
device = config.device | |
if args.ckpt_folder: | |
print('Testing with models in {}'.format(args.ckpt_folder)) | |
else: | |
print('Testing with model {}'.format(args.ckpt)) | |
if config.model == 'BiRefNet': | |
model = BiRefNet(bb_pretrained=False) | |
elif config.model == 'BiRefNetC2F': | |
model = BiRefNetC2F(bb_pretrained=False) | |
weights_lst = sorted( | |
glob(os.path.join(args.ckpt_folder, '*.pth')) if args.ckpt_folder else [args.ckpt], | |
key=lambda x: int(x.split('epoch_')[-1].split('.pth')[0]), | |
reverse=True | |
) | |
for testset in args.testsets.split('+'): | |
print('>>>> Testset: {}...'.format(testset)) | |
data_loader_test = torch.utils.data.DataLoader( | |
dataset=MyData(testset, image_size=config.size, is_train=False), | |
batch_size=config.batch_size_valid, shuffle=False, num_workers=config.num_workers, pin_memory=True | |
) | |
for weights in weights_lst: | |
if int(weights.strip('.pth').split('epoch_')[-1]) % 1 != 0: | |
continue | |
print('\tInferencing {}...'.format(weights)) | |
state_dict = torch.load(weights, map_location='cpu', weights_only=True) | |
state_dict = check_state_dict(state_dict) | |
model.load_state_dict(state_dict) | |
model = model.to(device) | |
inference( | |
model, data_loader_test=data_loader_test, pred_root=args.pred_root, | |
method='--'.join([w.rstrip('.pth') for w in weights.split(os.sep)[-2:]]), | |
testset=testset, device=config.device | |
) | |
if __name__ == '__main__': | |
# Parameter from command line | |
parser = argparse.ArgumentParser(description='') | |
parser.add_argument('--ckpt', type=str, help='model folder') | |
parser.add_argument('--ckpt_folder', default=sorted(glob(os.path.join('ckpt', '*')))[-1], type=str, help='model folder') | |
parser.add_argument('--pred_root', default='e_preds', type=str, help='Output folder') | |
parser.add_argument('--testsets', | |
default=config.testsets.replace(',', '+'), | |
type=str, | |
help="Test all sets: DIS5K -> 'DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'") | |
args = parser.parse_args() | |
if config.precisionHigh: | |
torch.set_float32_matmul_precision('high') | |
main(args) | |