Spaces:
Running
on
Zero
Running
on
Zero
| import torch.nn as nn | |
| def build_act_layer(act_layer): | |
| if act_layer == "ReLU": | |
| return nn.ReLU(inplace=True) | |
| elif act_layer == "SiLU": | |
| return nn.SiLU(inplace=True) | |
| elif act_layer == "GELU": | |
| return nn.GELU() | |
| raise NotImplementedError(f"build_act_layer does not support {act_layer}") | |
| def build_norm_layer( | |
| dim, norm_layer, in_format="channels_last", out_format="channels_last", eps=1e-6 | |
| ): | |
| layers = [] | |
| if norm_layer == "BN": | |
| if in_format == "channels_last": | |
| layers.append(to_channels_first()) | |
| layers.append(nn.BatchNorm2d(dim)) | |
| if out_format == "channels_last": | |
| layers.append(to_channels_last()) | |
| elif norm_layer == "LN": | |
| if in_format == "channels_first": | |
| layers.append(to_channels_last()) | |
| layers.append(nn.LayerNorm(dim, eps=eps)) | |
| if out_format == "channels_first": | |
| layers.append(to_channels_first()) | |
| else: | |
| raise NotImplementedError(f"build_norm_layer does not support {norm_layer}") | |
| return nn.Sequential(*layers) | |
| class to_channels_first(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, x): | |
| return x.permute(0, 3, 1, 2) | |
| class to_channels_last(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, x): | |
| return x.permute(0, 2, 3, 1) | |