Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops import rearrange | |
| from huggingface_hub import PyTorchModelHubMixin | |
| from kornia.filters import laplacian | |
| from engine.BiRefNet.config import Config | |
| from engine.BiRefNet.dataset import class_labels_TR_sorted | |
| from .backbones.build_backbone import build_backbone | |
| from .modules.aspp import ASPP, ASPPDeformable | |
| from .modules.decoder_blocks import BasicDecBlk, ResBlk | |
| from .modules.lateral_blocks import BasicLatBlk | |
| from .refinement.refiner import Refiner, RefinerPVTInChannels4, RefUNet | |
| from .refinement.stem_layer import StemLayer | |
| def image2patches( | |
| image, | |
| grid_h=2, | |
| grid_w=2, | |
| patch_ref=None, | |
| transformation="b c (hg h) (wg w) -> (b hg wg) c h w", | |
| ): | |
| if patch_ref is not None: | |
| grid_h, grid_w = ( | |
| image.shape[-2] // patch_ref.shape[-2], | |
| image.shape[-1] // patch_ref.shape[-1], | |
| ) | |
| patches = rearrange(image, transformation, hg=grid_h, wg=grid_w) | |
| return patches | |
| def patches2image( | |
| patches, | |
| grid_h=2, | |
| grid_w=2, | |
| patch_ref=None, | |
| transformation="(b hg wg) c h w -> b c (hg h) (wg w)", | |
| ): | |
| if patch_ref is not None: | |
| grid_h, grid_w = ( | |
| patch_ref.shape[-2] // patches[0].shape[-2], | |
| patch_ref.shape[-1] // patches[0].shape[-1], | |
| ) | |
| image = rearrange(patches, transformation, hg=grid_h, wg=grid_w) | |
| return image | |
| class BiRefNet( | |
| nn.Module, | |
| PyTorchModelHubMixin, | |
| library_name="birefnet", | |
| repo_url="https://github.com/ZhengPeng7/BiRefNet", | |
| tags=[ | |
| "Image Segmentation", | |
| "Background Removal", | |
| "Mask Generation", | |
| "Dichotomous Image Segmentation", | |
| "Camouflaged Object Detection", | |
| "Salient Object Detection", | |
| ], | |
| ): | |
| def __init__(self, bb_pretrained=True): | |
| super(BiRefNet, self).__init__() | |
| self.config = Config() | |
| self.epoch = 1 | |
| self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained) | |
| channels = self.config.lateral_channels_in_collection | |
| if self.config.auxiliary_classification: | |
| self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
| self.cls_head = nn.Sequential( | |
| nn.Linear(channels[0], len(class_labels_TR_sorted)) | |
| ) | |
| if self.config.squeeze_block: | |
| self.squeeze_module = nn.Sequential( | |
| *[ | |
| eval(self.config.squeeze_block.split("_x")[0])( | |
| channels[0] + sum(self.config.cxt), channels[0] | |
| ) | |
| for _ in range(eval(self.config.squeeze_block.split("_x")[1])) | |
| ] | |
| ) | |
| self.decoder = Decoder(channels) | |
| if self.config.ender: | |
| self.dec_end = nn.Sequential( | |
| nn.Conv2d(1, 16, 3, 1, 1), | |
| nn.Conv2d(16, 1, 3, 1, 1), | |
| nn.ReLU(inplace=True), | |
| ) | |
| # refine patch-level segmentation | |
| if self.config.refine: | |
| if self.config.refine == "itself": | |
| self.stem_layer = StemLayer( | |
| in_channels=3 + 1, | |
| inter_channels=48, | |
| out_channels=3, | |
| norm_layer="BN" if self.config.batch_size > 1 else "LN", | |
| ) | |
| else: | |
| self.refiner = eval( | |
| "{}({})".format(self.config.refine, "in_channels=3+1") | |
| ) | |
| if self.config.freeze_bb: | |
| # Freeze the backbone... | |
| print(self.named_parameters()) | |
| for key, value in self.named_parameters(): | |
| if "bb." in key and "refiner." not in key: | |
| value.requires_grad = False | |
| def forward_enc(self, x): | |
| if self.config.bb in ["vgg16", "vgg16bn", "resnet50"]: | |
| x1 = self.bb.conv1(x) | |
| x2 = self.bb.conv2(x1) | |
| x3 = self.bb.conv3(x2) | |
| x4 = self.bb.conv4(x3) | |
| else: | |
| x1, x2, x3, x4 = self.bb(x) | |
| if self.config.mul_scl_ipt == "cat": | |
| B, C, H, W = x.shape | |
| x1_, x2_, x3_, x4_ = self.bb( | |
| F.interpolate( | |
| x, size=(H // 2, W // 2), mode="bilinear", align_corners=True | |
| ) | |
| ) | |
| x1 = torch.cat( | |
| [ | |
| x1, | |
| F.interpolate( | |
| x1_, size=x1.shape[2:], mode="bilinear", align_corners=True | |
| ), | |
| ], | |
| dim=1, | |
| ) | |
| x2 = torch.cat( | |
| [ | |
| x2, | |
| F.interpolate( | |
| x2_, size=x2.shape[2:], mode="bilinear", align_corners=True | |
| ), | |
| ], | |
| dim=1, | |
| ) | |
| x3 = torch.cat( | |
| [ | |
| x3, | |
| F.interpolate( | |
| x3_, size=x3.shape[2:], mode="bilinear", align_corners=True | |
| ), | |
| ], | |
| dim=1, | |
| ) | |
| x4 = torch.cat( | |
| [ | |
| x4, | |
| F.interpolate( | |
| x4_, size=x4.shape[2:], mode="bilinear", align_corners=True | |
| ), | |
| ], | |
| dim=1, | |
| ) | |
| elif self.config.mul_scl_ipt == "add": | |
| B, C, H, W = x.shape | |
| x1_, x2_, x3_, x4_ = self.bb( | |
| F.interpolate( | |
| x, size=(H // 2, W // 2), mode="bilinear", align_corners=True | |
| ) | |
| ) | |
| x1 = x1 + F.interpolate( | |
| x1_, size=x1.shape[2:], mode="bilinear", align_corners=True | |
| ) | |
| x2 = x2 + F.interpolate( | |
| x2_, size=x2.shape[2:], mode="bilinear", align_corners=True | |
| ) | |
| x3 = x3 + F.interpolate( | |
| x3_, size=x3.shape[2:], mode="bilinear", align_corners=True | |
| ) | |
| x4 = x4 + F.interpolate( | |
| x4_, size=x4.shape[2:], mode="bilinear", align_corners=True | |
| ) | |
| class_preds = ( | |
| self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) | |
| if self.training and self.config.auxiliary_classification | |
| else None | |
| ) | |
| if self.config.cxt: | |
| x4 = torch.cat( | |
| ( | |
| *[ | |
| F.interpolate( | |
| x1, size=x4.shape[2:], mode="bilinear", align_corners=True | |
| ), | |
| F.interpolate( | |
| x2, size=x4.shape[2:], mode="bilinear", align_corners=True | |
| ), | |
| F.interpolate( | |
| x3, size=x4.shape[2:], mode="bilinear", align_corners=True | |
| ), | |
| ][-len(self.config.cxt) :], | |
| x4, | |
| ), | |
| dim=1, | |
| ) | |
| return (x1, x2, x3, x4), class_preds | |
| def forward_ori(self, x): | |
| ########## Encoder ########## | |
| (x1, x2, x3, x4), class_preds = self.forward_enc(x) | |
| if self.config.squeeze_block: | |
| x4 = self.squeeze_module(x4) | |
| ########## Decoder ########## | |
| features = [x, x1, x2, x3, x4] | |
| if self.training and self.config.out_ref: | |
| features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5)) | |
| scaled_preds = self.decoder(features) | |
| return scaled_preds, class_preds | |
| def forward(self, x): | |
| scaled_preds, class_preds = self.forward_ori(x) | |
| class_preds_lst = [class_preds] | |
| return [scaled_preds, class_preds_lst] if self.training else scaled_preds | |
| class Decoder(nn.Module): | |
| def __init__(self, channels): | |
| super(Decoder, self).__init__() | |
| self.config = Config() | |
| DecoderBlock = eval(self.config.dec_blk) | |
| LateralBlock = eval(self.config.lat_blk) | |
| if self.config.dec_ipt: | |
| self.split = self.config.dec_ipt_split | |
| N_dec_ipt = 64 | |
| DBlock = SimpleConvs | |
| ic = 64 | |
| ipt_cha_opt = 1 | |
| self.ipt_blk5 = DBlock( | |
| 2**10 * 3 if self.split else 3, | |
| [N_dec_ipt, channels[0] // 8][ipt_cha_opt], | |
| inter_channels=ic, | |
| ) | |
| self.ipt_blk4 = DBlock( | |
| 2**8 * 3 if self.split else 3, | |
| [N_dec_ipt, channels[0] // 8][ipt_cha_opt], | |
| inter_channels=ic, | |
| ) | |
| self.ipt_blk3 = DBlock( | |
| 2**6 * 3 if self.split else 3, | |
| [N_dec_ipt, channels[1] // 8][ipt_cha_opt], | |
| inter_channels=ic, | |
| ) | |
| self.ipt_blk2 = DBlock( | |
| 2**4 * 3 if self.split else 3, | |
| [N_dec_ipt, channels[2] // 8][ipt_cha_opt], | |
| inter_channels=ic, | |
| ) | |
| self.ipt_blk1 = DBlock( | |
| 2**0 * 3 if self.split else 3, | |
| [N_dec_ipt, channels[3] // 8][ipt_cha_opt], | |
| inter_channels=ic, | |
| ) | |
| else: | |
| self.split = None | |
| self.decoder_block4 = DecoderBlock( | |
| channels[0] | |
| + ( | |
| [N_dec_ipt, channels[0] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 | |
| ), | |
| channels[1], | |
| ) | |
| self.decoder_block3 = DecoderBlock( | |
| channels[1] | |
| + ( | |
| [N_dec_ipt, channels[0] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 | |
| ), | |
| channels[2], | |
| ) | |
| self.decoder_block2 = DecoderBlock( | |
| channels[2] | |
| + ( | |
| [N_dec_ipt, channels[1] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 | |
| ), | |
| channels[3], | |
| ) | |
| self.decoder_block1 = DecoderBlock( | |
| channels[3] | |
| + ( | |
| [N_dec_ipt, channels[2] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 | |
| ), | |
| channels[3] // 2, | |
| ) | |
| self.conv_out1 = nn.Sequential( | |
| nn.Conv2d( | |
| channels[3] // 2 | |
| + ( | |
| [N_dec_ipt, channels[3] // 8][ipt_cha_opt] | |
| if self.config.dec_ipt | |
| else 0 | |
| ), | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| ) | |
| ) | |
| self.lateral_block4 = LateralBlock(channels[1], channels[1]) | |
| self.lateral_block3 = LateralBlock(channels[2], channels[2]) | |
| self.lateral_block2 = LateralBlock(channels[3], channels[3]) | |
| if self.config.ms_supervision: | |
| self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0) | |
| self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0) | |
| self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0) | |
| if self.config.out_ref: | |
| _N = 16 | |
| self.gdt_convs_4 = nn.Sequential( | |
| nn.Conv2d(channels[1], _N, 3, 1, 1), | |
| nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), | |
| nn.ReLU(inplace=True), | |
| ) | |
| self.gdt_convs_3 = nn.Sequential( | |
| nn.Conv2d(channels[2], _N, 3, 1, 1), | |
| nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), | |
| nn.ReLU(inplace=True), | |
| ) | |
| self.gdt_convs_2 = nn.Sequential( | |
| nn.Conv2d(channels[3], _N, 3, 1, 1), | |
| nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), | |
| nn.ReLU(inplace=True), | |
| ) | |
| self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
| self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
| self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
| self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
| self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
| self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
| def forward(self, features): | |
| if self.training and self.config.out_ref: | |
| outs_gdt_pred = [] | |
| outs_gdt_label = [] | |
| x, x1, x2, x3, x4, gdt_gt = features | |
| else: | |
| x, x1, x2, x3, x4 = features | |
| outs = [] | |
| if self.config.dec_ipt: | |
| patches_batch = ( | |
| image2patches( | |
| x, | |
| patch_ref=x4, | |
| transformation="b c (hg h) (wg w) -> b (c hg wg) h w", | |
| ) | |
| if self.split | |
| else x | |
| ) | |
| x4 = torch.cat( | |
| ( | |
| x4, | |
| self.ipt_blk5( | |
| F.interpolate( | |
| patches_batch, | |
| size=x4.shape[2:], | |
| mode="bilinear", | |
| align_corners=True, | |
| ) | |
| ), | |
| ), | |
| 1, | |
| ) | |
| p4 = self.decoder_block4(x4) | |
| m4 = ( | |
| self.conv_ms_spvn_4(p4) | |
| if self.config.ms_supervision and self.training | |
| else None | |
| ) | |
| if self.config.out_ref: | |
| p4_gdt = self.gdt_convs_4(p4) | |
| if self.training: | |
| # >> GT: | |
| m4_dia = m4 | |
| gdt_label_main_4 = gdt_gt * F.interpolate( | |
| m4_dia, size=gdt_gt.shape[2:], mode="bilinear", align_corners=True | |
| ) | |
| outs_gdt_label.append(gdt_label_main_4) | |
| # >> Pred: | |
| gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt) | |
| outs_gdt_pred.append(gdt_pred_4) | |
| gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid() | |
| # >> Finally: | |
| p4 = p4 * gdt_attn_4 | |
| _p4 = F.interpolate(p4, size=x3.shape[2:], mode="bilinear", align_corners=True) | |
| _p3 = _p4 + self.lateral_block4(x3) | |
| if self.config.dec_ipt: | |
| patches_batch = ( | |
| image2patches( | |
| x, | |
| patch_ref=_p3, | |
| transformation="b c (hg h) (wg w) -> b (c hg wg) h w", | |
| ) | |
| if self.split | |
| else x | |
| ) | |
| _p3 = torch.cat( | |
| ( | |
| _p3, | |
| self.ipt_blk4( | |
| F.interpolate( | |
| patches_batch, | |
| size=x3.shape[2:], | |
| mode="bilinear", | |
| align_corners=True, | |
| ) | |
| ), | |
| ), | |
| 1, | |
| ) | |
| p3 = self.decoder_block3(_p3) | |
| m3 = ( | |
| self.conv_ms_spvn_3(p3) | |
| if self.config.ms_supervision and self.training | |
| else None | |
| ) | |
| if self.config.out_ref: | |
| p3_gdt = self.gdt_convs_3(p3) | |
| if self.training: | |
| # >> GT: | |
| # m3 --dilation--> m3_dia | |
| # G_3^gt * m3_dia --> G_3^m, which is the label of gradient | |
| m3_dia = m3 | |
| gdt_label_main_3 = gdt_gt * F.interpolate( | |
| m3_dia, size=gdt_gt.shape[2:], mode="bilinear", align_corners=True | |
| ) | |
| outs_gdt_label.append(gdt_label_main_3) | |
| # >> Pred: | |
| # p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx | |
| # F_3^G --sigmoid--> A_3^G | |
| gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt) | |
| outs_gdt_pred.append(gdt_pred_3) | |
| gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid() | |
| # >> Finally: | |
| # p3 = p3 * A_3^G | |
| p3 = p3 * gdt_attn_3 | |
| _p3 = F.interpolate(p3, size=x2.shape[2:], mode="bilinear", align_corners=True) | |
| _p2 = _p3 + self.lateral_block3(x2) | |
| if self.config.dec_ipt: | |
| patches_batch = ( | |
| image2patches( | |
| x, | |
| patch_ref=_p2, | |
| transformation="b c (hg h) (wg w) -> b (c hg wg) h w", | |
| ) | |
| if self.split | |
| else x | |
| ) | |
| _p2 = torch.cat( | |
| ( | |
| _p2, | |
| self.ipt_blk3( | |
| F.interpolate( | |
| patches_batch, | |
| size=x2.shape[2:], | |
| mode="bilinear", | |
| align_corners=True, | |
| ) | |
| ), | |
| ), | |
| 1, | |
| ) | |
| p2 = self.decoder_block2(_p2) | |
| m2 = ( | |
| self.conv_ms_spvn_2(p2) | |
| if self.config.ms_supervision and self.training | |
| else None | |
| ) | |
| if self.config.out_ref: | |
| p2_gdt = self.gdt_convs_2(p2) | |
| if self.training: | |
| # >> GT: | |
| m2_dia = m2 | |
| gdt_label_main_2 = gdt_gt * F.interpolate( | |
| m2_dia, size=gdt_gt.shape[2:], mode="bilinear", align_corners=True | |
| ) | |
| outs_gdt_label.append(gdt_label_main_2) | |
| # >> Pred: | |
| gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt) | |
| outs_gdt_pred.append(gdt_pred_2) | |
| gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid() | |
| # >> Finally: | |
| p2 = p2 * gdt_attn_2 | |
| _p2 = F.interpolate(p2, size=x1.shape[2:], mode="bilinear", align_corners=True) | |
| _p1 = _p2 + self.lateral_block2(x1) | |
| if self.config.dec_ipt: | |
| patches_batch = ( | |
| image2patches( | |
| x, | |
| patch_ref=_p1, | |
| transformation="b c (hg h) (wg w) -> b (c hg wg) h w", | |
| ) | |
| if self.split | |
| else x | |
| ) | |
| _p1 = torch.cat( | |
| ( | |
| _p1, | |
| self.ipt_blk2( | |
| F.interpolate( | |
| patches_batch, | |
| size=x1.shape[2:], | |
| mode="bilinear", | |
| align_corners=True, | |
| ) | |
| ), | |
| ), | |
| 1, | |
| ) | |
| _p1 = self.decoder_block1(_p1) | |
| _p1 = F.interpolate(_p1, size=x.shape[2:], mode="bilinear", align_corners=True) | |
| if self.config.dec_ipt: | |
| patches_batch = ( | |
| image2patches( | |
| x, | |
| patch_ref=_p1, | |
| transformation="b c (hg h) (wg w) -> b (c hg wg) h w", | |
| ) | |
| if self.split | |
| else x | |
| ) | |
| _p1 = torch.cat( | |
| ( | |
| _p1, | |
| self.ipt_blk1( | |
| F.interpolate( | |
| patches_batch, | |
| size=x.shape[2:], | |
| mode="bilinear", | |
| align_corners=True, | |
| ) | |
| ), | |
| ), | |
| 1, | |
| ) | |
| p1_out = self.conv_out1(_p1) | |
| if self.config.ms_supervision and self.training: | |
| outs.append(m4) | |
| outs.append(m3) | |
| outs.append(m2) | |
| outs.append(p1_out) | |
| return ( | |
| outs | |
| if not (self.config.out_ref and self.training) | |
| else ([outs_gdt_pred, outs_gdt_label], outs) | |
| ) | |
| class SimpleConvs(nn.Module): | |
| def __init__(self, in_channels: int, out_channels: int, inter_channels=64) -> None: | |
| super().__init__() | |
| self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1) | |
| self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1) | |
| def forward(self, x): | |
| return self.conv_out(self.conv1(x)) | |
| ########### | |
| class BiRefNetC2F( | |
| nn.Module, | |
| PyTorchModelHubMixin, | |
| library_name="birefnet_c2f", | |
| repo_url="https://github.com/ZhengPeng7/BiRefNet_C2F", | |
| tags=[ | |
| "Image Segmentation", | |
| "Background Removal", | |
| "Mask Generation", | |
| "Dichotomous Image Segmentation", | |
| "Camouflaged Object Detection", | |
| "Salient Object Detection", | |
| ], | |
| ): | |
| def __init__(self, bb_pretrained=True): | |
| super(BiRefNetC2F, self).__init__() | |
| self.config = Config() | |
| self.epoch = 1 | |
| self.grid = 4 | |
| self.model_coarse = BiRefNet(bb_pretrained=True) | |
| self.model_fine = BiRefNet(bb_pretrained=True) | |
| self.input_mixer = nn.Conv2d(4, 3, 1, 1, 0) | |
| self.output_mixer_merge_post = nn.Sequential( | |
| nn.Conv2d(1, 16, 3, 1, 1), nn.Conv2d(16, 1, 3, 1, 1) | |
| ) | |
| def forward(self, x): | |
| x_ori = x.clone() | |
| ########## Coarse ########## | |
| x = F.interpolate( | |
| x, | |
| size=[s // self.grid for s in self.config.size[::-1]], | |
| mode="bilinear", | |
| align_corners=True, | |
| ) | |
| if self.training: | |
| scaled_preds, class_preds_lst = self.model_coarse(x) | |
| else: | |
| scaled_preds = self.model_coarse(x) | |
| ########## Fine ########## | |
| x_HR_patches = image2patches( | |
| x_ori, patch_ref=x, transformation="b c (hg h) (wg w) -> (b hg wg) c h w" | |
| ) | |
| pred = F.interpolate( | |
| ( | |
| scaled_preds[-1] | |
| if not (self.config.out_ref and self.training) | |
| else scaled_preds[1][-1] | |
| ), | |
| size=x_ori.shape[2:], | |
| mode="bilinear", | |
| align_corners=True, | |
| ) | |
| pred_patches = image2patches( | |
| pred, patch_ref=x, transformation="b c (hg h) (wg w) -> (b hg wg) c h w" | |
| ) | |
| t = torch.cat([x_HR_patches, pred_patches], dim=1) | |
| x_HR = self.input_mixer(t) | |
| pred_patches = image2patches( | |
| pred, patch_ref=x_HR, transformation="b c (hg h) (wg w) -> b (c hg wg) h w" | |
| ) | |
| if self.training: | |
| scaled_preds_HR, class_preds_lst_HR = self.model_fine(x_HR) | |
| else: | |
| scaled_preds_HR = self.model_fine(x_HR) | |
| if self.training: | |
| if self.config.out_ref: | |
| [outs_gdt_pred, outs_gdt_label], outs = scaled_preds | |
| [outs_gdt_pred_HR, outs_gdt_label_HR], outs_HR = scaled_preds_HR | |
| for idx_out, out_HR in enumerate(outs_HR): | |
| outs_HR[idx_out] = self.output_mixer_merge_post( | |
| patches2image( | |
| out_HR, | |
| grid_h=self.grid, | |
| grid_w=self.grid, | |
| transformation="(b hg wg) c h w -> b c (hg h) (wg w)", | |
| ) | |
| ) | |
| return [ | |
| ( | |
| [ | |
| outs_gdt_pred + outs_gdt_pred_HR, | |
| outs_gdt_label + outs_gdt_label_HR, | |
| ], | |
| outs + outs_HR, | |
| ), | |
| class_preds_lst, | |
| ] # handle gt here | |
| else: | |
| return [ | |
| scaled_preds | |
| + [ | |
| self.output_mixer_merge_post( | |
| patches2image( | |
| scaled_pred_HR, | |
| grid_h=self.grid, | |
| grid_w=self.grid, | |
| transformation="(b hg wg) c h w -> b c (hg h) (wg w)", | |
| ) | |
| ) | |
| for scaled_pred_HR in scaled_preds_HR | |
| ], | |
| class_preds_lst, | |
| ] | |
| else: | |
| return scaled_preds + [ | |
| self.output_mixer_merge_post( | |
| patches2image( | |
| scaled_pred_HR, | |
| grid_h=self.grid, | |
| grid_w=self.grid, | |
| transformation="(b hg wg) c h w -> b c (hg h) (wg w)", | |
| ) | |
| ) | |
| for scaled_pred_HR in scaled_preds_HR | |
| ] | |