File size: 8,675 Bytes
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# -*- coding: utf-8 -*-
# @Organization  : Alibaba XR-Lab
# @Author        : Lingteng Qiu
# @Email         : [email protected]
# @Time          : 2025-03-03 10:28:47
# @Function      : easy to use SSIM and LPIPS metric

import os
import pdb
import shutil
from collections import defaultdict

import numpy as np
import torch
from PIL import Image
from prettytable import PrettyTable
from torch.utils.data import Dataset
from torchmetrics.image import StructuralSimilarityIndexMeasure
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
from torchvision import transforms
from tqdm import tqdm


def write_json(path, x):
    """write a json file.

    Args:
        path (str): path to write json file.
        x (dict): dict to write.
    """
    import json

    with open(path, "w") as f:
        json.dump(x, f, indent=2)


def img_center_padding(img_np, pad_ratio=0.2):

    ori_w, ori_h = img_np.shape[:2]

    w = round((1 + pad_ratio) * ori_w)
    h = round((1 + pad_ratio) * ori_h)

    img_pad_np = (np.ones((w, h, 3), dtype=img_np.dtype) * 255).astype(np.uint8)
    offset_h, offset_w = (w - img_np.shape[0]) // 2, (h - img_np.shape[1]) // 2
    img_pad_np[
        offset_h : offset_h + img_np.shape[0] :, offset_w : offset_w + img_np.shape[1]
    ] = img_np

    return img_pad_np, offset_w, offset_h


def scan_files_in_dir(directory, postfix=None, progress_bar=None) -> list:
    file_list = []
    progress_bar = (
        tqdm(total=0, desc=f"Scanning", ncols=100)
        if progress_bar is None
        else progress_bar
    )
    for entry in os.scandir(directory):
        if entry.is_file():
            if postfix is None or os.path.splitext(entry.path)[1] in postfix:
                file_list.append(entry)
                progress_bar.total += 1
                progress_bar.update(1)
        elif entry.is_dir():
            file_list += scan_files_in_dir(
                entry.path, postfix=postfix, progress_bar=progress_bar
            )
    return file_list


class EvalDataset(Dataset):
    def __init__(self, gt_folder, pred_folder, height=1024):
        self.gt_folder = gt_folder
        self.pred_folder = pred_folder
        self.height = height
        self.data = self.prepare_data()
        self.to_tensor = transforms.ToTensor()

    def extract_id_from_filename(self, filename):
        # find first number in filename
        start_i = None
        for i, c in enumerate(filename):
            if c.isdigit():
                start_i = i
                break
        if start_i is None:
            assert False, f"Cannot find number in filename {filename}"
        return filename[start_i : start_i + 8]

    def prepare_data(self):
        gt_files = scan_files_in_dir(self.gt_folder, postfix={".jpg", ".png"})

        gt_dict = {self.extract_id_from_filename(file.name): file for file in gt_files}
        pred_files = scan_files_in_dir(self.pred_folder, postfix={".jpg", ".png"})

        pred_files = list(filter(lambda x: "visualization" not in x.name, pred_files))

        tuples = []
        for pred_file in pred_files:
            pred_id = self.extract_id_from_filename(pred_file.name)
            if pred_id not in gt_dict:
                print(f"Cannot find gt file for {pred_file}")
            else:
                tuples.append((gt_dict[pred_id].path, pred_file.path))
        return tuples

    def resize(self, img):
        w, h = img.size
        new_w = int(w * self.height / h)
        return img.resize((new_w, self.height), Image.LANCZOS)

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        gt_path, pred_path = self.data[idx]

        gt, pred = self.resize(Image.open(gt_path)), self.resize(Image.open(pred_path))
        if gt.height != self.height:
            gt = self.resize(gt)
        if pred.height != self.height:
            pred = self.resize(pred)
        gt = self.to_tensor(gt)
        pred = self.to_tensor(pred)
        return gt, pred


def copy_resize_gt(gt_folder, height):
    new_folder = os.path.join(
        os.path.dirname(gt_folder[:-1] if gt_folder[-1] == "/" else gt_folder),
        f"resize_{height}",
    )
    if not os.path.exists(new_folder):
        os.makedirs(new_folder, exist_ok=True)
    for file in tqdm(os.listdir(gt_folder)):
        img = Image.open(os.path.join(gt_folder, file))
        img = np.asarray(img)
        img, _, _ = img_center_padding(img)
        img = Image.fromarray(img)
        w, h = img.size
        img.save(os.path.join(new_folder, file))

    return new_folder


@torch.no_grad()
def ssim(dataloader):
    ssim_score = 0
    ssim = StructuralSimilarityIndexMeasure(data_range=1.0).to("cuda")
    for gt, pred in tqdm(dataloader, desc="Calculating SSIM"):
        batch_size = gt.size(0)
        gt, pred = gt.to("cuda"), pred.to("cuda")
        ssim_score += ssim(pred, gt) * batch_size
    return ssim_score / len(dataloader.dataset)


@torch.no_grad()
def lpips(dataloader):
    lpips_score = LearnedPerceptualImagePatchSimilarity(net_type="squeeze").to("cuda")
    score = 0
    for gt, pred in tqdm(dataloader, desc="Calculating LPIPS"):
        batch_size = gt.size(0)
        pred = pred.to("cuda")
        gt = gt.to("cuda")
        # LPIPS needs the images to be in the [-1, 1] range.
        gt = (gt * 2) - 1
        pred = (pred * 2) - 1
        score += lpips_score(gt, pred) * batch_size
    return score / len(dataloader.dataset)


def eval(pred_folder, gt_folder):
    # Check gt_folder has images with target height, resize if not
    pred_sample = os.listdir(pred_folder)[0]
    gt_sample = os.listdir(gt_folder)[0]

    img = Image.open(os.path.join(pred_folder, pred_sample))
    gt_img = Image.open(os.path.join(gt_folder, gt_sample))

    copy_folder = None
    if img.height != gt_img.height:
        title = "--" * 30 + "Resizing GT Images to height {img.height}" + "--" * 30
        print(title)
        gt_folder = copy_resize_gt(gt_folder, img.height)
        print("-" * len(title))
        copy_folder = gt_folder

    # Form dataset
    dataset = EvalDataset(gt_folder, pred_folder, img.height)

    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=16,
        num_workers=0,
        shuffle=False,
        drop_last=False,
    )

    # Calculate Metrics
    header = []
    row = []

    header += ["SSIM", "LPIPS"]
    ssim_ = ssim(dataloader).item()
    lpips_ = lpips(dataloader).item()
    row += [ssim_, lpips_]

    # Print Results
    print("GT Folder  : ", gt_folder)
    print("Pred Folder: ", pred_folder)
    table = PrettyTable()
    table.field_names = header
    table.add_row(row)

    if copy_folder is not None:
        shutil.rmtree(copy_folder)

    return ssim_, lpips_


def get_parse():
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("-f1", "--folder1", type=str, required=True)
    parser.add_argument("-f2", "--folder2", type=str, required=True)
    parser.add_argument("--pre", type=str, default="")
    parser.add_argument("--pad", action="store_true", help="if the gt pad?")
    parser.add_argument("--debug", action="store_true")
    args = parser.parse_args()
    return args


if __name__ == "__main__":

    opt = get_parse()

    input_folder = opt.folder1
    target_folder = opt.folder2

    valid_txt = os.path.join(input_folder, "front_view.txt")

    target_folder = target_folder[:-1] if target_folder[-1] == "/" else target_folder

    target_key = target_folder.split("/")[-2:]

    save_folder = os.path.join(f"./exps/metrics{opt.pre}", "psnr_results", *target_key)
    os.makedirs(save_folder, exist_ok=True)

    with open(valid_txt) as f:
        items = f.read().splitlines()
        items = [x.split(" ")[0] for x in items]

    results_dict = defaultdict(dict)
    lpips_list = []
    ssim_list = []

    for item in items:

        target_item_folder = os.path.join(input_folder, item)
        input_item_folder = os.path.join(target_folder, item, "rgb")

        if os.path.exists(input_item_folder) and os.path.exists(target_item_folder):

            ssim_, lpips_ = eval(input_item_folder, target_item_folder)

            if ssim_ == -1:
                continue

            lpips_list.append(lpips_)
            ssim_list.append(ssim_)

            results_dict[item]["lpips"] = lpips_
            results_dict[item]["ssim"] = ssim_
            if opt.debug:
                break
            print(results_dict)

    results_dict["all_mean"]["lpips"] = np.mean(lpips_list)
    results_dict["all_mean"]["ssim"] = np.mean(ssim_list)

    write_json(os.path.join(save_folder, "lpips_ssim.json"), results_dict)